Thin knotted vortex tubes in stationary solutions to the Euler equation

Thu, Nov 6, 2014, 4:30 pm

In this talk we will discuss the proof of the existence of thin vortex tubes for stationary solutions to the incompressible Euler equation in R^3. More precisely, given a finite collection of (possibly linked and knotted) disjoint thin tubes in R^3, we will show that they can be transformed using a small diffeomorphism into a set of vortex tubes of a Beltrami field that tends to zero at infinity.

Location: 
Fine 322
Speaker(s): 

Upcoming Events

*Online Conference* Analysis of Fluids and Related Topics: Traveling wave solutions to the free boundary Navier-Stokes equations, Speaker: Ian Tice, Carnegie Mellon University

*Online Seminar* Graduate Student Seminar: Locally Interacting Markov Chains on Random and Heterogeneous Graphs, Speaker, Mira Gordin

VIRTUAL IDeAS Seminar: Yong Sheng Soh, National University of Singapore

Wed, Mar 17, 2021, 10:30 am
Location: via Zoom - Link TBA