Infinite volume limit for the Nonlinear Schrodinger Equation and Weak turbulence

Thu, Nov 13, 2014, 4:30 pm

The theory of weak turbulence has been put forward by applied mathematicians to describe the asymptotic behavior of NLS set on a compact domain - as well as many other infinite dimensional Hamiltonian systems. It is believed to be valid in a statistical sense, in the weakly nonlinear, infinite volume limit. I will present how these limits can be taken rigorously, and give rise to new equations. 

Location: 
Fine 322
Speaker(s): 

Upcoming Events

*Online Conference* Analysis of Fluids and Related Topics: Traveling wave solutions to the free boundary Navier-Stokes equations, Speaker: Ian Tice, Carnegie Mellon University

*Online Seminar* Graduate Student Seminar: Locally Interacting Markov Chains on Random and Heterogeneous Graphs, Speaker, Mira Gordin

VIRTUAL IDeAS Seminar: Yong Sheng Soh, National University of Singapore

Wed, Mar 17, 2021, 10:30 am
Location: via Zoom - Link TBA