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Abstract

Many applications, such as photon-limited imaging and genomics, involve large datasets with noisy
entries from exponential family distributions. It is of interest to estimate the covariance structure and
principal components of the noiseless distribution. Principal Component Analysis (PCA), the standard
method for this setting, can be inefficient when the noise is non-Gaussian.

We develop ePCA (exponential family PCA), a new methodology for PCA on exponential family
distributions. ePCA can be used for dimensionality reduction and denoising of large data matrices.
ePCA involves the eigendecomposition of a new covariance matrix estimator, constructed in a simple
and deterministic way using moment calculations, shrinkage, and random matrix theory.

We provide several theoretical justifications for our estimator, including the finite-sample convergence
rate, and the Marchenko-Pastur law in high dimensions. ePCA compares favorably to PCA and various
PCA alternatives for exponential families, in simulations as well as in XFEL and SNP data analysis. An
open-source implementation is available.

1 Introduction

In many applications we have large collections of data vectors with entries sampled from exponential families
(such as Poisson or Binomial). This setting arises in image processing, computational biology, and natural
language processing, among others. It is often of interest to reduce the dimensionality and understand the
structure of the data.

The standard method for dimension reduction and denoising of large datasets is Principal Component
Analysis (PCA) (e.g., Jolliffe, 2002; Anderson, 2003). However, PCA is most naturally designed for Gaussian
data, and there is no commonly agreed upon extension to non-Gaussian settings such as exponential families
(see. e.g., Jolliffe, 2002, Sec. 14.4). While there are several proposals for extending PCA to non-Gaussian
distributions, each of them has certain limitations, such as computational intractability for large datasets
(see Sec. 2 for a detailed discussion).

We propose the new method ePCA for PCA of data from exponential families. ePCA involves the eigen-
decomposition of a new covariance matrix estimator. Like usual PCA, it can be used for visualization and
denoising of large data matrices. Moreover, ePCA has several appealing properties. First, it is a computa-
tionally efficient deterministic algorithm that comprises a small number of basic linear algebraic operations,
making it as fast as usual PCA and scalable to “big” datasets. This is in contrast to typical likelihood
approaches involving iterative methods such as alternating least squares, the EM algorithm etc., without
convergence guarantees. Second, it is a flexible method suitable for datasets with multiple types of variables
(such as Poisson, Binomial, and Negative Binomial). Third, it has substantial theoretical justification. We
provide finite-sample convergence rates, and a precise high-dimensional analysis building on random matrix
theory. Fourth, each step of ePCA is interpretable, which can be important to practitioners.
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We perform extensive simulations with ePCA and show that in several metrics it outperforms usual PCA,
PCA after standardization, and PCA alternatives for exponential families (see Sec. 6.1.2). We apply ePCA
to simulated X-ray Free Electron Laser (XFEL) data, where it leads to better denoising—visually and in
MSE—than PCA. We also apply ePCA to a dataset from the Human Genome Diversity Project (HGDP)
measuring Single Nucleotide Polymorphisms, where it leads to a clearer structure than PCA.

ePCA is publicly available in an open-source Matlab implementation from github.com/lydiatliu/

epca/. That link also has software to reproduce our computational results.
To motivate our method, we now discuss a few potential application areas.

1.1 Denoising XFEL diffraction patterns

(a) Clean intensity maps (b) Noisy photon counts (c) Denoised (PCA) (d) Denoised (ePCA + EBLP)

Figure 1.1: XFEL diffraction pattern formation model and denoising. See section 6.1 for details.

X-ray free electron lasers (XFEL) are an increasingly popular experimental technique to understand the
three-dimensional structure of molecules (e.g., Favre-Nicolin et al., 2015; Maia and Hajdu, 2016). XFEL
imaging leads to two-dimensional diffraction patterns of single particles. A key advantage of XFEL is that it
uses extremely short femtosecond X-ray pulses, during which the molecule does not change its structure. As
illustrated in Figure 1.1, these images are very noisy due to the low number of photons, and the count-noise
at each detector follows an approximately Poisson distribution. Further, we only capture one diffraction
pattern per particle, and the particle orientations are unknown.

In order to reconstruct the 3-D structure of the particle, one approach is to use expectation-maximization
(EM) (e.g., Scheres et al., 2007; Loh and Elser, 2009). Alternatively, assuming that the orientations are
uniformly distributed over the special orthogonal group SO(3), Kam’s method (Kam, 1977, 1980) could
provide a way to estimate the 3-D structure without optimizing likelihood via EM (see e.g., Saldin et al.,
2009). A requirement is to estimate the covariance matrix of the noiseless 2-D images. This motivates us
to develop the ePCA method for covariance estimation and PCA of Poisson data, and more generally for
exponential families. To illustrate the improvement in covariance estimation of ePCA over PCA, in Figure
1.1 we show the result of denoising simulated XFEL using different estimated covariance matrices, where
EBLP refers to the denoiser we develop in section 5 for use in conjunction with ePCA.

1.2 Genetic polymorphism data/SNPs

In genomics, Single Nucleotide Polymorphism (SNP) data are the basis of thousands of Genome-Wide
Association Studies (GWAS), which have recently led to hundreds of novel associations between common
traits and genetic variants (e.g., Visscher et al., 2012).

SNP data can be represented as an n× p matrix X with Xij equal to the number of minor alleles (0, 1
or 2) of the j-th SNP in the genome of the i-th individual. The number of individuals n can be more than
10,000, while the number of SNPs can be as large as 2.5 million. Binomial models are natural for such data.
PCA is commonly used to infer population structure from SNP data, with a wide range of applications,
including correcting for confounding in GWAS (see e.g., Patterson et al. (2006)). It is thus of interest to
understand the proper way to estimate the covariance matrix and PCs.

Among other potential application areas, we point out RNA-sequencing, where negative binomial models
are routinely in use (Anders and Huber, 2010).
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1.3 Our contributions

We now briefly summarize our contributions:

1. We propose the new method ePCA for PCA of exponential family data. ePCA is based on a new
covariance estimator that we develop in a sequence of steps (Sec. 3 and 4). We start with a diagonal
debiasing of the sample covariance matrix (Sec 3.2), and characterize the finite-sample convergence
rate to the population covariance matrix (Sec. 3.2.1).

2. To improve performance for high-dimensional data, we propose a method of homogenization, shrinkage,
and heterogenization of the debiased covariance matrix (Sec. 4). Homogenization is a form of variable
weighting, different from the usual method of standardizing the features to have unit variance. We
justify it by proving the standard Marchenko-Pastur law (Marchenko and Pastur, 1967) for the homog-
enized sample covariance matrix (Sec. 4.1.1), and by showing that homogenization improves the signal
strength (Sec. 4.2.2). An additional eigenvalue shrinkage step—that we call scaling—is needed beyond
the well-understood shrinkage methods for homoskedastic Gaussian distributions (e.g., Donoho et al.,
2013). This leads to our final covariance estimator, and ePCA consists of its the eigendecomposition.

We evaluate our covariance estimators in a simulation study, and show that they reduce the MSE for
covariance, eigenvalue, and eigenvector estimation (Sec. 4.2.3).

3. For biallelic genetic markers such as Single Nucleotide Polymorphisms (SNPs), homogenization agrees
with the widely used normalization assuming Hardy-Weinberg equilibrium (HWE) (Sec. 4.3). This
provides perhaps the first theoretical justification for HWE normalization.

4. We apply ePCA to develop a new denoising method (Sec. 5), a form of empirical Best Linear Predictor
(EBLP) from random effects models (Searle et al., 2009, Sec. 7.4), where we use our covariance
estimator to estimate parameters in the BLP denoiser. In areas such as electrical engineering and
signal processing, the BLP is known as the “Wiener filter” or the “Linear Minimum Mean Squared
Estimator (LMMSE)” (e.g., Kay, 1993, Ch. 12).

5. We apply ePCA denoising to simulated XFEL data where it leads to better denoising than PCA (Sec.
6.1) We also apply ePCA to a SNP dataset from the Human Genome Diversity Project (HGDP) (Li
et al., 2008), where it leads to a clearer structure in the PC scores than PCA (Sec. 6.4b).

2 Related work

To give context for our method, we review related work. The reader intersted in the methodology can skip
directly to Section 3. We refer to Jolliffe (2002) for a detailed overview of PCA methodology, to Anderson
(2003) for a more general overview of multivariate statistical analysis including PCA, and to Yao et al. (2015)
for discussions of high-dimensional statistics, random matrix theory and PCA.

2.1 Standardization and weighting in PCA

In applying PCA, a key concern is whether or not to standardize the variables (e.g., Jolliffe, 2002, Sec. 2.3).
Standardization ensures that results for different sets of random variables are more comparable, and also
that PCs are less dominated by individual variables with large variances. Not standardizing makes statistical
inference more convenient. In exploratory analyses, however, standardization is usually preferred. In our
setting, the homogenization method (Sec. 4.1) has several advantages over standardization.

A more general class of methods is weighted PCA, where PCA is applied to rescaled random variables
wjX(j), for some wj > 0 (Jolliffe, 2002, Sec. 2.3., Sec. 14.2.) In general, choosing the weights can be
nontrivial. Our homogenization step of ePCA (Sec. 4.1) is a particular weighting method, justified for
data from exponential families. In addition to proposing it, we provide several theoretical justifications: the
standard Marchenko-Pastur law, and the improvements in signal to noise ratio (SNR) (see Sec. 4.1).
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2.2 PCA in non-Gaussian distributions, GLLVMs

There have been several approaches suggested for extending PCA to non-Gaussian distributions, see. e.g.,
Jolliffe (2002), Sec. 14.4. One possibility is to use robust estimates of the covariance matrix (see Jolliffe, 2002,
Sec. 14.4, for references). Another approach assumes that the natural parameter lies in a low dimensional
space (Collins et al., 2001), and then attempts to maximize the log-likelihood. This leads to a non-convex
optimization problem for which an alternating maximization method is proposed, without global convergence
guarantees. More recently, Udell et al. (2014, 2016) described a similar generalization of PCA, while Li and
Tao (2010) proposed another likelihood-based method, both without global convergence guarantees. Scalable
methods include Josse and Wager (2016), albeit without precise performance guarantees in high dimensions.

Within factor analysis, generalized linear latent variable models (GLLVMs) model the relationship of an
observed variable from a general distribution with unobserved latent variables (Knott and Bartholomew,
1999; Huber et al., 2004). These flexible likelihood-based methods enable careful modelling and statistical
inference for parameters of interest in low-dimensional settings. However, estimation and inference are
computationally challenging, and published examples have at most 10-20 dimensions (Huber et al., 2004).
In contrast our algorithm is as fast as PCA and we avoid any optimization problems. In addition, we have
some understanding of the performance in high dimensions, by connecting to random matrix theory.

2.3 Denoising and covariance estimation by singular value shrinkage

Recently, results from random matrix theory have been used for studying covariance estimation and PCA for
Gaussian and rotationally invariant data (e.g., Shabalin and Nobel, 2013; Donoho et al., 2013; Nadakuditi,
2014). While the qualitative insights they identify—e.g., the improvements due to eigenvalue shrinkage—are
relevant to our setting, the specific results and methods do not apply directly.

The recent work of Bigot et al. (2016) develops a generalized Stein’s Unbiased Risk Estimation (SURE)
approach for singular value shrinkage denoising of low-rank matrices in exponential families. However, their
shrinkage formulas become numerically intractable for Frobenius norm beyond Gaussian errors, and they
instead introduce a heuristic algorithm. Their work is geared towards higher signal-to-noise ratio settings.

2.4 Image processing and denoising

There are many approaches to denoising in image and signal processing, the majority designed for Gaussian
noise (see e.g., Starck et al., 2010). Most classical methods are designed for “single-image denoising”, and
do not share information across multiple images. Our setting is different, because we have many very noisy
samples—e.g., XFEL images.

Starck et al. (2010) Sec. 6.5. provides an overview of the classical methods for Poisson noise. Popular
approaches reduce to the Gaussian case by a wavelet transform such as a Haar transform (Nowak and Bara-
niuk, 1999); by adaptive wavelet shrinkage; or by approximate variance stabilization such as the Anscombe
transform. The latter is known to work well for Poisson signals with large parameters, due to approximate
normality. However, the normal approximation breaks down for the Poisson with a small parameter, such
as photon-limited XFEL (see e.g., Starck et al., 2010, Sec. 6.6).

Other methods are based on singular value thresholding (SVT), with various approaches to handling non-
Gaussian noise. For example, Furnival et al. (2016) performs SVT of the data matrix of image time-series in
low noise, picking the regularization parameter to minimize the Poisson-Gaussian Unbiased Risk Estimator.
We instead homogenize the data and propose a second-moment based denoising method. Alternatively, Cao
and Xie (2014) frames denoising as a regularized maximum likelihood problem and uses SVT to optimize an
approximation of the Poisson likelihood. Our approach avoids nonconvex likelihood optimization problems.

3 Covariance estimation

ePCA is the eigendecomposition of a new covariance matrix estimator. To develop this estimator, we start
with the sample covariance matrix and propose a sequence of improvements (see Table 1 and below).
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Table 1: Covariance estimators

Notation Name Formula Defined in Motivation

S Sample covariance S = n−1
∑n
i=1(Yi − Ȳ )(Yi − Ȳ )> (4) -

Sd Diagonal debiasing Sd = S − diag[V (Ȳ )] (5) Hierarchy

Sh Homogenization Sh = D
−1/2
n SdD

−1/2
n (6) Heteroskedasticity

Sh,η Shrinkage Sh,η = η(Sh) (7) High dimensionality

She Heterogenization She = D
1/2
n Sh,ηD

1/2
n (8) Heteroskedasticity

Ss Scaling Ss =
∑
α̂iv̂iv̂

>
i , where She =

∑
v̂iv̂
>
i (13) Heteroskedasticity

Algorithm 1: Covariance matrix estimation and ePCA

Input: Data Y = [Y1, · · · , Yn]> ∈ Rn×p; Desired rank r ≤ p;
Mean-variance map V of exponential family, as defined in (3).
Output: Covariance estimator Ss ∈ Rp×p of noiseless vectors; ePCA: eigendecomposition of Ss.

1 Compute the sample mean Ȳ = n−1
∑n
i=1 Yi

2 Compute the sample covariance matrix S = n−1
∑n
i=1(Yi − Ȳ )(Yi − Ȳ )>

3 Compute the variance estimates Dn = diag[V (Ȳ )]
4 Homogenize and diagonally debias the covariance matrix Sh = D

−1/2
n SD

−1/2
n − Ip

5 Compute the eigendecomposition Sh = ŴΛŴ>

6 Shrink the eigenvalues Sh,η = Ŵη(Λr)Ŵ
> =

∑r
i=1

ˆ̀
iŵiŵ

>
i of top r eigenvalues Λr = diag(λ1, . . . , λr).

7 Compute the scaling coefficients α̂i = [1− s2(ˆ̀
i; γ)τi]/c

2(ˆ̀
i; γ) (as in (12))

8 Heterogenize the covariance matrix She = D
1/2
n Sh,ηD

1/2
n

9 Scale the covariance matrix Ss =
∑
α̂iv̂iv̂

>
i , where the eigendecomposition of She is She =

∑
v̂iv̂
>
i

We will work with observations Y from the canonical one-parameter exponential family with density

pθ(y) = exp[θy −A(θ)] (1)

with respect to a σ-finite measure ν on R (see e.g., Lehmann and Romano (2005)). Here θ ∈ R is the
natural parameter of the family and A(θ) = log

∫
exp(θy)dν(y) is the log-partition function. We assume

the distribution is well-defined for all θ in an open set. The mean and variance of Y can be expressed as
EY = A′(θ) and Var[Y ] = A′′(θ), where we denote g′(θ) = dg(θ)/dθ.

Our running example will be the Poisson distribution y ∼ Poisson(x). Here the carrier measure is
the discrete measure with density ν(dy) = 1/y! with respect to the counting measure on the non-negative
integers, while θ = log(x) and A(θ) = exp(θ).

3.1 The observation model

Let Y ∈ Rp be a random vector with some unknown distribution. We observe n i.i.d. noisy data vectors
Yi ∼ Y . In the XFEL application, Y is the noisy image with the pixels as coordinates. We consider the
following hierarchical model for Y . First, a latent vector—or hyperparameter—θ ∈ Rp is drawn from a
probability distribution D with mean µθ and covariance matrix Σθ. Conditional on θ, the coordinates of
Y = (Y (1), . . . , Y (p))> are drawn independently from an exponential family Y (j) ∼ pθ(j)(y) defined in (1).
Formally, denoting by ∼̇ the mean and the covariance of a random vector:

θ ∼̇ (µθ,Σθ)

Y (j)|θ(j) ∼ pθ(j)(y), Y = (Y (1), . . . , Y (p))>.

Therefore, the mean of Y conditional on θ is

X := E(Y |θ) = (A′(θ(1)), . . . , A′(θ(p)))> = A′(θ),
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so the noisy data vector Y can be expressed as Y = A′(θ) + ε̃, with E(ε̃|θ) = 0, while the marginal mean of
Y is EY = EA′(θ). Thus one can think of Y as a noisy realization of the clean vector X = A′(θ). However,
the latent vector θ is also random and varies from sample to sample. In the XFEL application, A′(θ) are
the unobserved noiseless images.

The assumption of conditional independence given θ may sound restrictive. It means that all latent
effects that induce correlations do so through θ and not through some other mechanism. However, we can
always capture some of the latent correlations in the “mean” structure by increasing the number of PCs. In
addition, similar conditional independence is also common in empirical work such as bulk RNA-Seq analysis
(e.g., Anders and Huber, 2010).

It is important that we model the mean A′(θ) of the exponential family as our clean signal, as opposed
to the natural parameter θ. One reason is that this enables a simple and deterministic algorithm, in contrast
to the typical likelihood methods. Another reason is that in many applications, it is reasonable to assume
that the means of noisy signals have a “low-complexity” structure, such as lying on a low-dimensional linear
subspace. For instance, Basri and Jacobs (2003) found that the images of a single face under different
lighting conditions inhabit an approximately 9-dimensional linear space. As mentioned in Sec. 2, this is a
key modelling assumption distinguishing our approach from prior work like Collins et al. (2001).

We thus have Y = A′(θ) + diag[A′′(θ)]
1/2ε, where the coordinates of ε are conditionally independent and

standardized given θ. Therefore, the covariance of Y conditional on θ is

Cov[Y |θ] = diag[A′′(θ(1)), . . . , A′′(θ(p))] = diag[A′′(θ)].

The marginal covariance of Y is given by the law of total covariance:

Cov[Y ] = Cov[E(Y |θ)] + E[Cov[Y |θ]] = Cov[A′(θ)] + Ediag[A′′(θ)]. (2)

For Poisson observations Y ∼ Poissonp(X), where X ∈ Rp is random, we can write Y = X+diag(X)
1/2ε.

The natural parameter is the vector θ with θ(j) = logX(j). Since A′(θ(j)) = A′′(θ(j)) = exp(θ(j)) = X(j),
we see EY = EX, and Cov[Y ] = Cov[X] + Ediag[X].

3.2 Diagonal debiasing

We will propose several estimators of increasing sophistication to estimate the covariance matrix Σx =
Cov[A′(θ)] of the noiseless vectors Xi = A′(θi) (see Table 1). Clearly, due to the covariance equation (2),
the sample covariance matrix of Yi is biased for estimating the diagonal elements of Σx. Fortunately, this
bias can be corrected. Indeed, we only need to subtract the noise variances EA′′(θ(j)). We know that
EY (j) = EA′(θ(j)), so it is natural to define associated estimators via the variance map of the exponential
family, which takes a mean parameter A′(θ) into the associated variance parameter A′′(θ). Formally,

V (m) = A′′[(A′)−1(m)]. (3)

If the distribution of Y is non-degenerate, A′′(θ) = Varθ(Y ) > 0, so A′ is increasing and invertible, and the
variance map is well-defined.

We define the sample covariance estimator

S = n−1
n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )>, (4)

where Ȳ = n−1
∑n
i=1 Yi is the sample mean. We estimate EA′′(θ) by V (Ȳ ), and define the diagonally

debiased covariance estimator
Sd = S − diag[V (Ȳ )]. (5)

Continuing with our Poisson example, A′(θ) = A′′(θ) = exp(θ), so V (m) = m, and Sd = S − diag[Ȳ ]. In
this example the estimator is unbiased, because V is linear. When V is non-linear, the estimator can become
slightly biased.
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3.2.1 The rate of convergence

Our first theoretical result characterizes the finite-sample convergence rate of the diagonally debiased covari-
ance estimator Sd, for any fixed n, p. This estimator is not a sample covariance matrix, which is inconsistent
in our case when n→∞ and p is fixed. Thus it is necessary to study its convergence rate from first principles.

For this we need to make a few technical assumptions. First, we assume that the variance map V is
Lipschitz with constant L. It is easy to check that this is true for the Gaussian and Poisson distributions.
We also assume that the coordinates of the random vector θ are almost surely bounded, ‖θ‖∞ ≤ B. Since A′

is continuous and invertible, this is equivalent to the boundedness of A′(θ). This is reasonable in the areas
that we are interested in—XFEL imaging does not have infinite energy, so we have an upper bound on the
intensity of pixels. Finally we assume that m4 = maxi E[Y (i)4] ≥ C for some universal constant C > 0. This
is reasonable, as it states that at least some entries of the random vector have non-vanishing magnitude.

Let . denote inequality up to constants not depending on n and p. Let ‖ · ‖Fr be the Frobenius norm
and ‖ · ‖ be the operator norm. Our result, proved in Sec. A.1, is

Theorem 3.1 (Rate of convergence of debiased covariance estimator). The diagonally debiased covariance
estimator Sd has the following rates of convergence. In Frobenius norm, with µ := EY = EX = EA′(θ):

E[‖Sd − Σx‖Fr] .
√
p

n
[
√
p ·m4 + ‖µ‖] .

In operator norm, with the dimensional constant C(p) = 4(1 + 2dlog pe):

E[‖Sd − Σx‖] .
√
C(p)

(E‖Y ‖4)
1/2 + (log n)3(log p)2√

n
+

√
p

n

[
1 +

√
p

n
+ ‖µ‖

]
.

The two error rates are both of interest, and complement each other. The Frobenius norm rate captures
the deviation across all entries of the covariance matrix. The operator norm rate is typically faster than the
Frobenius norm rate. For instance, in XFEL it is reasonable to assume that that the total intensity across
all detectors is fixed as the resolution increases. This leads to a fixed value for E‖Y ‖4 that does not grow
with n. The operator norm rate can be as fast as (p/n)

1/2 while the Frobenius norm rate is p/n
1/2.

Our proof of Thm. 3.1 exploits that exponential family random variables are sub-exponential, so we can
use corresponding moment bounds. We also rely on operator-norm bounds for random matrices from Tropp
(2016) and on moment bounds from Boucheron et al. (2005).

4 Homogenization and shrinkage

4.1 Homogenization

In the previous sections, we showed that the diagonally debiased sample covariance matrix converges at a
rate O(pn−

1/2). Next we propose a shrinkage method to improve this estimator in the high dimensional
regime where n, p → ∞ and p/n → γ > 0. As a preliminary step, it is helpful to homogenize the empirical
covariance matrix and remove the effects of heteroskedasticity. This allows us to get closer to the standard
spiked model (Johnstone, 2001) where the noise has the same variance for all features. In that setting
covariance estimation via eigenvalue shrinkage has been thoroughly studied (Donoho et al., 2013).

The vector of noise variances affecting the different components is E[A′′(θ)]. For a given signal Y =
A′(θ) + diag[A′′(θ)]

1/2ε, homogenization transforms it to Yh = diag[A′′(θ)]−
1/2A′(θ) + ε. The covariance is

transformed from Cov [Y ] to diag[A′′(θ)]−
1/2 Cov [Y ] diag[A′′(θ)]−

1/2. Since the diagonal correction Dn =
diag[V (Ȳ )] estimates Ediag[A′′(θ)], we define the homogenized covariance estimator by

Sh = D−
1/2

n SdD
−1/2
n = D−

1/2
n SD−

1/2
n − Ip. (6)
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For Poisson observations, every entry of the noisy vector has to be divided by square root of the corresponding
entry of the sample mean, so Sh = diag[Ȳ ]−

1/2S diag[Ȳ ]−
1/2 − Ip.

Homogenization is different from standardization, the classical method for removing heteroskedasticity.
To standardize, each feature—e.g., pixel—is divided by its empirical standard deviation (e.g., Jolliffe, 2002,
Sec. 2.3.). This ensures that all features have the same norm. The sample covariance matrix becomes a
sample correlation matrix. In our case it turns out that this procedure “over-corrects”. The overall variance
Var[Y (i)] of each feature is the sum of the signal variance Var[A′(θ(i))] and the noise variance E[A′′(θ(i))].
Homogenization divides by the estimated noise standard errors, while standardization divides by the overall
standard error due to the signal and noise.

Therefore, in our setting homogenization is more justified than standardization. Moreover, the standard
Marchenko-Pastur law holds for the homogenized estimator (Thm. 4.2 in the next section). This also suggests
that the top “noise” eigenvalue has a well-understood Tracy-Widom distribution asymptotically (Johnstone,
2001), which can be used to devise tests of significance. Another justification is that standardization improves
the signal strength for “delocalized” eigenvectors (Sec. 4.2.2). We discuss these in detail below.

4.1.1 Marchenko-Pastur law

A key advantage of homogenization is that the homogenized estimator has a simple well-understood asymp-
totic behavior. In contrast, the unhomogenized estimator has a more complicated behavior. In this section,
we show both of the above claims. We show that the limit spectra of our covariance matrix estimators are
characterized by the Marchenko-Pastur (MP) law (Marchenko and Pastur, 1967), proving the general MP
law for the sample covariance S, and the standard MP law for the homogenized covariance Sh.

For simplicity, we consider the case is when θ ∈ Rp is fixed. This can be thought of as the “null”
case, where all mean signals are the same. Then we can write Yi = A′(θ) + diag[A′′(θ)]

1/2εi, where εi have
independent standardized entries. Therefore, letting Y be the n × p matrix whose rows are Y >i , we have
Y = ~1A′(θ)> + E diag[A′′(θ)]

1/2, where ~1 = (1, 1, . . . , 1)> is the vector of all ones, and E is an n × p matrix
of independent standardized random variables.

Let Hp be the uniform distribution on the p scalars A′′(θ(i)), i = 1, . . . , p. We assume that A′′(θ(i)) > c
for some universal constant c > 0. In the Poisson example, this means that the individual rates x(i) are
bounded away from 0. The reason for this assumption is to avoid the very sparse regime, where only a few
nonzero entries per row are observed. In that case, the MP law is not expected to hold.

Consider the high dimensional asymptotic limit when n, p→∞ so that p/n→ γ > 0. Suppose moreover
that Hp converges weakly to some limit distribution, i.e., Hp ⇒ H. Since diag[A′′(θ)] can be viewed as the
population covariance matrix of the noise, H is the limit population spectral distribution (PSD). Since E has
independent standardized entries with bounded moments, it follows that the distribution of the p eigenvalues
of n−1Y>Y converges almost surely to the general Marchenko-Pastur distribution Fγ,H (Bai and Silverstein,
2009, Thm. 4.3).

Now, the sample covariance matrix S is a rank-one perturbation of n−1Y>Y. Therefore its eigenvalue
distribution also converges to the MP law. We state this for comparison with the next result.

Proposition 4.1 (Marchenko-Pastur law for sample covariance matrix). The eigenvalue distribution of S
converges almost surely to the general Marchenko-Pastur distribution Fγ,H .

Since the general MP law has a complicated implicit description that needs to be studied numerically (see
e.g., Dobriban, 2015), it is useful to work with the homogenized covariance matrix Sh. Indeed, we establish
that the standard Marchenko-Pastur law characterizes its limit spectrum. The standard Marchenko-Pastur
distribution has a simple closed-form density, and there are many useful tools already available for low-rank
covariance estimation (e.g., Shabalin and Nobel, 2013; Donoho et al., 2013).

Theorem 4.2 (Marchenko-Pastur law for homogenized covariance matrix). The eigenvalue distribution of
Sh + Ip converges almost surely to the standard Marchenko-Pastur distribution with aspect ratio γ.
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(a) Rank 0 case (b) Rank 1 case (Spiked Model)

Figure 4.1: Empirical distribution of eigenvalues of homogenized sample covariance Sh for different values of
γ = p/n, with the corresponding shifted Marchenko-Pastur density overlaid as a red curve. Data simulated
according to 4.2. In the legend for (b), ‘Top Debiased EV’ refers top eigenvalue of Sh, while ‘True EV’ refers

to the top eigenvalue of D
−1/2
n ΣxD

−1/2
n , which we want to estimate.

In the proof presented in Appendix A.1.3, we deduce this from the Marchenko-Pastur law for the error
matrix n−

1/2E , for which standard results from Bai and Silverstein (2009) apply. The emergence of the
standard MP law motivates the shrinkage method presented next.

4.2 Eigenvalue shrinkage

Since the early work of Stein (Stein, 1956) it is known that the estimation error of the sample covariance
can be decreased by eigenvalue shrinkage. Therefore, we will apply an eigenvalue shrinkage method to the
homogenized covariance matrix Sh. Let η(·) be a generic matrix shrinker, defined for symmetric matrices
M with eigendecomposition M = UΛU> as η(M) = Uη(Λ)U>. Here η(Λ) is defined by applying the scalar
shrinker η—typically a nonlinear function—elementwise on the diagonal of the diagonal matrix Λ. Then our
homogenized and shrunken estimators will have the form

Sh,η = η(Sh) = η(D−
1/2

n SdD
−1/2
n ). (7)

We are interested in settings where the clean signals lie on a low-dimensional subspace. We then expect the
true covariance matrix Σx of the clean signals to be of low rank. However, based on Thm. 4.2, even in the
case when Σx = 0, the empirical homogenized covariance matrix is of full rank, and its eigenvalues have
an asymptotic MP distribution. We are thus interested in shrinkers η that set all noise eigenvalues to zero,
specifically η(x) = 0 for x within the support of the shifted MP distribution x ∈ [(1−√γ)2, (1 +

√
γ)2]− 1.

An example is operator norm shrinkage (Donoho et al., 2013).
However, homogenization by Dn 6= Ip also changes the direction of the eigenvectors. Therefore, to

improve the accuracy of subspace estimates after eigenvalue shrinkage, we heterogenize, multiplying back by
the estimated standard errors. We define the heterogenized covariance estimator as:

She = D
1/2
n · Sh,η ·D

1/2
n . (8)

Heterogenization is a non-linear operation that changes both the eigenvectors and eigenvalues. While it
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Table 2: Spiked models: Summary of the original and homogenized spiked model.

Model Original Homogenized

Latent Signal Xi = u+ ziv D−
1/2Xi = D−

1/2u+ ziD
−1/2v

Marginal Covariance Cov[Y ] = vv> +D Cov[Yh] = D−
1/2vv>D−

1/2 + Ip

Eigenvector vnorm = v/‖v‖ w = D−
1/2v/‖D−1/2v‖

Spike t = v>v ` = v>D−1v

SNR v>v
trD

v>D−1v
p

improves the estimates of the eigenvectors (PCs), it turns out that it introduces a bias in the eigenvalues.
Therefore, we will need a final scaling step to correct this bias (Sec. 4.2.3).

To understand homogenization empirically, we perform two simulations. First, we generate non-negative
i.i.d {Xi}1≤i≤n lying in a low-dimensional space of dimension r: we pick r vectors v1, . . . , vr ∈ Rp whose
coordinates are i.i.d uniformly distributed in [0, 1], and normalize each to have an L1 norm of unity. For
each i, sample r coefficients ai1, . . . , air independently from the uniform distribution on [0,1]. Define Xi =
ai1v1 + . . . + airvr. Note that Xi are non-negative, reside in a hyperplane spanned by v1, . . . , vr, and the
mean and covariance of Xi can be found easily in terms of v1, . . . , vr. The coefficients ai1, . . . , air are also
normalized so that ai1 + . . . + air = A, where A = 25(1 +

√
γ)2 is a constant relating to signal strength,

chosen empirically to push the top eigenvalue outside of the bulk. Finally we sample Yi ∼ Poissonp(Xi)
independently.

We display a Monte Carlo instance of the eigenvalue histogram of Sh on Figure 4.1. When r = 0, the
standard MP distribution—shifted by −1—is a good match (Fig. 4.1a). This is in accordance with Thm.
4.2. When r = 1, the standard MP distribution still matches the bulk of the noise eigenvalues (Fig. 4.1b).
Moreover, we observe the same qualitative behaviour as in the classical spiked model, where the top empirical
eigenvalue overshoots the population eigenvalue. Next we study this phenomenon more precisely.

4.2.1 The spiked model: Colored and homogenized

To develop a method for estimating the eigenvalue after homogenization and heterogenization, we study a
generalization of the spiked model (Johnstone, 2001) appropriate for our setting. Specifically, based on the
covariance structure of the noisy signal, Eq. (2), we model the mean parameter X = A′(θ) of the exponential
family—the clean observation—as a low rank vector. For simplicity, we will present the results in the rank
one case, but they generalize directly to higher rank.

Suppose that the i-th clean observation has the form Xi = A′(θi) = u+ ziv, where u, v are deterministic
p-dimensional vectors, and zi are i.i.d. standardized random variables. In the Poisson case where Yi ∼
Poissonp(Xi), this assumes that the latent mean vectors are Xi = u+ ziv. The vector u is the global mean
of the clean images, while v denotes the direction in which they vary.

For Xi to be a valid mean parameter, we need the additional condition that u(j) + zi|v(j)| ∈ A′(Θ), for
all i, j, where Θ is the natural parameter space of the exponential family, and f(S) denotes the forward map
of the set S under the function f . For instance, in the Poisson case, we need that Xi(j) ≥ 0 for all i, j. If
we take zi to be uniform random variables on [−

√
3,
√

3], so that their variance is unity, then a sufficient
condition is that u(j) ≥

√
3|v(j)| for all j.

Using our formula for the marginal covariance of the noisy observations, Cov[Y ] = Cov[X]+Ediag[V (X)],
and defining D = Ediag[V (X)], we obtain

Cov[Y ] = vv> +D. (9)

For instance, in the Poisson case we have Cov[Y ] = vv> + diag[u].
We homogenize the observations dividing by the elements of D

1/2. The elements of D are expected values
of variances. They are thus positive, except for coordinates that that can be discarded because they have
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no variability. The homogenized observations are Yh = D−
1/2Y , and their population covariance matrix is

Cov[Yh] = D−
1/2vv>D−

1/2 + Ip. (10)

We now compare this with the usual standard spiked model (Johnstone, 2001) where the observations
Yh are Gaussian and have covariance matrix Cov[Yh] = `ww> + Ip, where ` ≥ 0 and the vector w has unit
norm. The top eigenvalue is called the “spike”. This model has been thoroughly studied in probability
theory and statistics. In particular, the Baik-Ben Arous-Péché (BBP) phase transition (PT) (Baik et al.,
2005) shows that when n, p→∞ such that p/n→ γ > 0, the top eigenvalue of the sample covariance matrix
asymptotically separates from the Marchenko-Pastur bulk if the population spike ` >

√
γ. Otherwise, the

top sample eigenvalue does not separate from the MP bulk. This was shown first for complex Gaussian
observations, then generalized to other distributions (see e.g., Yao et al., 2015).

Heuristically, comparing with (10), we surmise that a spiked model with ` = v>D−1v and w = D−
1/2v/

‖D−1/2v‖ is a good approximation in our case. In particular the BBP phase transition should happen
approximately when v>D−1v =

√
γ. In the Poisson case the condition is v> diag[u]−1v =

√
γ. Next we

provide numerical evidence for this surmise, and develop its consequences.

4.2.2 Homogenization improves SNR

In this section we justify our homogenization method theoretically, showing that it can improve the signal-
to-noise ratio. This was observed empirically in previous work on covariance estimation in a related setting,
but a theoretical explanation is lacking (Bhamre et al., 2016).

As usual, we define the SNR of a “signal+noise” vector observation y = s+ n as the ratio of the trace of
the covariances of s and of n. In the unhomogenized model from Eq. (9)

SNR =
tr Cov [X]

trEdiag[V (X)]
=

tr vv>

trD
=
v>v

trD
.

In particular, the SNR is of order O(1/p) in the typical case when the vector v has norm of unit order. In
the homogenized model from Eq. (10), the SNR equals v>D−1v/p.

Suppose now that v is approximately delocalized in the sense that p · v>D−1v ≈ trD−1 · v>v. This holds
for instance if the entries of v are i.i.d. centered random variables with the same variance σ2. In that case,
Ev>D−1v = σ2 trD−1 and Ev>v = σ2p, and under higher moment assumptions it is easy to show the
concentration of these quantities around their means, showing delocalization as above. If v is delocalized,
then we obtain that the SNR in the homogenized model is higher than in the original model. Indeed, this
follows because D is diagonal, so by the Cauchy-Schwarz inequality

v>D−1v

p
≈ trD−1 · v>v

p2
=

∑p
i=1D

−1
i · v>v
p2

≥ v>v∑p
i=1Di

=
v>v

trD
.

Moreover, we can define the improvement (or amplification) in SNR as

I =
trD

p
· v
>D−1v

v>v
. (11)

The above heuristic can be formalized as follows:

Proposition 4.3. Suppose the signal eigenvector v is delocalized in the sense that for some ε > 0,

v>D−1v

v>v
≥ (1− ε) tr[D−1]

p
.

Let moreover β be the following measure of heteroskedasticity:

β =

∑p
i=1Di ·

∑p
i=1D

−1
i

p2
≥ 1.

Then the SNR is improved by homogenization, by a ratio I ≥ (1− ε)β.

If β is large and ε > 0 is small, the SNR can improve substantially.
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4.2.3 Eigenvalue shrinkage and scaling

We now continue with our overall goal of estimating the covariance matrix Cov[X] = vv> of X. This has
one nonzero eigenvalue t = ‖v‖2 and corresponding eigenvector vnorm = v/‖v‖. We use the top eigenvector
of the heterogenized covariance matrix She as an estimator of vnorm. To estimate t, a first thought is to use
the top empirical eigenvalue of She, but as we show next, this naive estimator is biased.

For data with independent coordinates and equal variances, the cumulative work of many authors (e.g.,
Baik et al., 2005; Baik and Silverstein, 2006; Paul, 2007; Benaych-Georges and Nadakuditi, 2011, etc) shows
that if the population spike ` is above the BBP phase transition—i.e., ` >

√
γ—then the top sample spike

pops out from the Marchenko-Pastur distribution of the “noise” eigenvalues. The top eigenvalue will converge
to the value given by the spike forward map:

λ(`; γ) =

{
(1 + `)

(
1 + γ

`

)
if ` > γ

1/2,
(1 + γ

1/2)2 otherwise.

We conjecture that the BBP phase transition also applies to our case, and describes the behavior of the
spikes after homogenization. We have verified this in numerical simulations in certain cases (data not shown
due to space limitations). Therefore, as in previous work, we propose to estimate ` consistently by inverting
the spike forward map (see e.g., Lee et al., 2010; Donoho et al., 2013), i.e., defining ˆ̀= λ−1(λmax(Sh)).
Donoho et al. (2013) provided an asymptotic optimality result for this estimator of the spike in operator
norm loss.

Once we have a good estimator ˆ̀ of ` = v>D−1v, a first thought is to estimate t = v>v as the top
eigenvalue of the heterogenized covariance matrix She. However, this estimator is biased. The estimation
accuracy is affected in a significant way by the inconsistency of the empirical eigenvector ŵ of Sh as an
estimator of the true eigenvector w = D−

1/2v/‖D−1/2v‖. We can quantify this heuristically based on results
for Gaussian data. In the Gaussian standard spiked model the empirical and true eigenvectors have an
asymptotically deterministic angle: (w>ŵ)2 → c2(`; γ) almost surely, where c(`; γ) is the cosine forward map
given by (e.g., Paul, 2007; Benaych-Georges and Nadakuditi, 2011, etc):

c(`; γ)2 =

{
1−γ/`2
1+γ/` if ` > γ

1/2,

0 otherwise.

Heuristically, in finite samples we can write ŵ ≈ cw + sε, where s = s(`; γ) ≥ 0 is the sine defined by
s2 = 1− c2, and ε is white noise with approximate norm ‖ε‖ = 1. Then, since w>Dw = v>v/v>D−1v = t/`,
and ε>Dε ≈ tr(D)/d, we have

‖v̂‖2 ≈ ` · ŵ>Dŵ ≈ ` · (cw + sε)>D(cw + sε) ≈ ` · (c2w>Dw + s2ε>Dε) ≈ tc2 + `s2 tr(D)/p.

Comparing this to ‖v‖2 = t = tc2 + ts2, we find that the bias is

‖v̂‖2 − t ≈ s2
(
v>D−1v · tr(D)/p− v>v

)
= s2t · (I − 1) ≥ 0.

This suggests that ‖v̂‖2 is an upward biased estimator of t = ‖v‖2. Interestingly, the bias is closely related
to the improvement I in SNR.

To correct the bias, we propose an estimator of the form t̂(α) = α‖v̂‖2 for which α‖v̂‖2 ≈ ‖v‖2. We
have ‖v̂‖2 ≈ t · [1 + s2(I − 1)], suggesting that we define α = [1 + s2(I − 1)]−1. This quantity is an
unknown population parameter, and it depends on s2 and I. We can estimate s2 in the usual way by
ŝ2 = s2(ˆ̀; γ). Since I itself depends on the parameter t we are trying to estimate, we plug in the same
estimator t̂(α) = α‖v̂‖2, leading to the following estimator of I (where we also define τ for future use):

Î(α) =
trDn

p
·

ˆ̀

t̂(α)
=

trDn

p
·

ˆ̀

α‖v̂‖2
=
τ

α
.

Since α = [1 + s2(I − 1)]−1, it is reasonable to require that the fixed-point equation α̂ = [1 + ŝ2(Î(α̂)− 1)]−1

holds.
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We can equivalently rewrite the fixed-point equation as 1/α̂ = ĉ2 + ŝ2Î(α̂) = ĉ2 + ŝ2τ/α̂. Or, when
ĉ2 > 0,

α̂ =
1− ŝ2τ
ĉ2

. (12)

When ĉ2 = 0, i.e., when ˆ̀≤ √γ, the equation reads 1/α̂ = τ/α̂. If τ = 1, this has solution α = 1, else it

has no solution. Therefore, when ĉ2 = 0, we define α̂ = 1. We finally define t̂(α̂) = α̂‖v̂‖2. The implication
is that we ought to rescale the estimated magnitude of the signal subspace corresponding to v by α̂.

In the multispiked case, suppose Xj = u +
∑r
i=1 zijvi. Then the marginal covariance of Y is Cov [Y ] =∑r

i=1 viv
>
i + D. Suppose that the vi are sorted in the order of decreasing norm. Suppose moreover that

the heterogenized sample covariance She has the form She =
∑r
i=1 v̂iv̂

>
i =

∑r
i=1 λ̂iûiû

>
i , where ûi are

orthonormal, and the λ̂i ≥ 0 are sorted in decreasing order. Based on our above discussion, we define the
scaled covariance matrix as

Ss =

r∑
i=1

α̂iv̂iv̂
>
i , (13)

where α̂i is defined in (12), with ŝ2 = ŝ2i = s2(ˆ̀
i; γ). This concludes our methodology for covariance

estimation. We use the terminology ePCA for the eigendecomposition of the covariance matrix estimator
(13). Both the eigenvalues and the eigenvectors of this estimator are different from those of the sample
covariance matrix.

ePCA is summarized in Alg. 1. Clearly, ePCA is applicable when the variables x(i) have known non-
identical distributions, which the modification that homogenization should be done by the mean-variance
map of the distribution of each particular coordinate. As discussed at the beginning of Sec. 4.2, we assume
here that we have a guess r for the number of PCs. In exploratory analyses, one can often try several choices
for r. While there are many formal methods for choosing the rank r (see e.g., Jolliffe, 2002), it is beyond
our scope to investigate them in detail here.

4.2.4 Simulations with ePCA

We report the results of a simulation study with ePCA. We simulate data Yi from the Poisson model
Yi ∼ Poissonp(Xi), where the mean parameters are Xi = u + zi`

1/2v, the zi are i.i.d. unit variance random
variables uniformly distributed on [−

√
3,
√

3], and u ∈ Rp has entries u(i) sorted in increasing order on a
uniform grid on [1, 3], while v ∈ Rp has entries v(i) sorted in increasing order on a uniform grid on [−1, 1],
standardized so that ‖v‖2 = 1. We take the dimension p = 500, and γ = 1/2, so n = 1000. The phase
transition occurs when the spike is ` =

√
γ/v> diag[u]−1v ≈ 1.2. We vary the spike strength ` on a uniform

grid of size 20 on [0, 3]. We generate nM = 100 independent Monte Carlo trials, and compute the mean of
the heterogenized spike estimator t̂ = ‖v̂‖2 and the ePCA—or scaled—estimator t̂(α̂) = α̂‖v̂‖2.

The results displayed in Fig. 4.2 (left) show that the ePCA/scaled estimator (top eigenvalue of Ss)
reduces the bias of the heterogenized estimator (top eigenvalue of She) especially for large spikes. Both are
much better than the debiased estimator (top eigenvalue of Sd). Below the phase transition (vertical line),
both estimators have the same approximate value.

We can also define an estimator of the improvement in SNR I, as Î(α̂). The mean of this estimator
over the same simulation is displayed in Fig. 4.2 (middle). We observe that it is approximately unity below
the PT. This makes sense, because the spike is below the PT both before and after homogenization. The
improvement in SNR has a “jump” just above the PT, because the spike pops out from the bulk after
homogenization. This is where homogenization helps the most. However, Î is not “infinitely large”, because
the signal is detectable in the unhomogenized spectrum, except it is spread across all eigenvalues (see e.g.,
Dobriban, 2016). Finally, Î(α̂) drops to a lower value, still above unity, and stabilizes. We find this an
illuminating way to quantify the improvement due to homogenization.

Finally, we also display the mean of the squared correlation between the true and empirical eigenvectors
of various covariance estimators in figure 4.2 (right). The predicted PT matches the empirical PT. The ePCA
eigenvector—top eigenvector of Ss—in this case agrees with the eigenvector of the heterogenized covariance
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Figure 4.2: Simulation with ePCA. Left: Spike estimation; true, debiased, heterogenized, and scaled (ePCA).
Middle: Estimated improvement in SNR due to homogenization. Right: Squared correlation beween v and
leading eigenvector of various covariance estimates; sample, debiased, heterogenized (ePCA). Plotted against
the spike.

matrix She, because both are of rank one. ePCA has the highest correlation, and the improvement is
significant just above the PT.

4.3 Homogenization agrees with HWE normalization

It is of special interest that for Binomial(2) data, and specifically for biallelic genetic markers such as
Single Nucleotide Polymorphisms, our homogenization method recovers exactly the well-known normalization
assuming Hardy-Weinberg equilibrium (HWE). In these datasets the entries Xij are counts ranging from
0 to 2 denoting the number of copies of the variant allele of biallelic marker j in the genome of individual
i. The HWE normalization divides the entries of SNP j by

√
2p̂j(1− p̂j), where p̂j = (2n)−1

∑
iXij is

the estimated allele frequency of variant j (e.g., Patterson et al., 2006, p. 2075). It is easy to see that
this is exactly the same as our homogenization method assuming that the individual data points Xij are
Binomial(2)-distributed.

Previously, the HWE normalization was motivated by a connection to genetic drift, and by the empir-
ical observation that it improves results on observational and simulated data (Patterson et al., 2006, p.
2075). Our theoretical results justify HWE normalization. In particular, our Thm. 4.2 suggests that the
Marchenko-Pastur is an accurate null distributions after homogenization. Numerical results also suggest
that the approximations to both the MP law and the Tracy-Widom distribution for the top eigenvalue are
more accurate than after standardization (data not shown for space reasons). In addition, our result on the
improved SNR (Prop. 4.3) suggests that “signal” becomes easier to identify after homogenization.

However, in practice we often see similar results with homogenization and standardization. In many
SNP datasets, the variants not approximately in HWE—i.e., the variants for which a goodness of fit test
to a Binomial(2) distribution is rejected—are removed as part of data quality control. Therefore, most
remaining SNPs have an empirical distribution well fit by a Binomial(2). In such cases standardization and
homogenization lead to similar results.

5 Denoising

As an application of ePCA, we develop a method to denoise the observed data. Formally the goal of denoising
is to predict the noiseless signal vectors Xi = A′(θi). Our model is a random effects model (see e.g., Searle
et al., 2009), hence we predict Xi using the Best Linear Predictor—or BLP (Searle et al., 2009, Sec. 7.4).
Let Ẽ(X|Y ) = BY + C denote the minimum MSE linear predictor of the random vector X using Y , where
B is a deterministic matrix, and C is a deterministic vector. This is known under various names, including
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the Wiener filter, see Sec. 1.3. We will refer to it as the BLP, which is the common terminology in random
effects models. It is well known (e.g., Searle et al., 2009, Sec. 7.4) that

B = Σx [diag[EA′′(θ)] + Σx]
−1

and C = diag[EA′′(θ)] [diag[EA′′(θ)] + Σx]
−1 EA′(θ).

The BLP depends on the unknown parameters Σx, diag[EA′′(θ)], and E[A′(θ)]. The standard strategy,
known as Empirical BLP or EBLP (e.g., Searle et al., 2009) is to estimate these unknown parameters using
the entire dataset, and denoise the vectors Yi by plug-in:

X̂i = Σ̂x

[
diag[ÊA′′(θ)] + Σ̂x

]−1
Yi + diag[ÊA′′(θ)]

[
diag[ÊA′′(θ)] + Σ̂x

]−1
Ȳ .

We will use ePCA, i.e., the scaled covariance matrix Ss proposed in (13) to estimate Σx. As before in Sec.
3.2, we will use the sample mean Ȳ to estimate E[A′(θ)], and V (Ȳ ) to estimate the noise variances EA′′(θ).
However, in principle different estimators could be used.

For the Poisson distribution, we have

X̂i = Ss
(
diag[Ȳ ] + Ss

)−1
Ŷi + diag[Ȳ ]

(
diag[Ȳ ] + Ss

)−1
Ȳ .

In some examples there are coordinates where Ȳ (j) = 0. In our XFEL application this corresponds to pixels
where no photon was observed during the entire experiment. This causes a problem because the matrix
Σ̂ = diag[Ȳ ] + Ss may no longer be invertible: Ss is of low rank, while diag[Ȳ ] is also not of full rank. To

avoid this problem, we implement a ridge-regularized covariance estimator Σ̂ε = (1 − ε)Σ̂ + ε · m̃Ip as in

Ledoit and Wolf (2004), where m̃ = tr Σ̂/p and ε > 0 is a small constant. Note that tr Σ̂ε = tr Σ̂. The ridge-
regularized estimator Σ̂ε has a small bias, but is invertible. In our default implementation we take ε = 0.1.
Similar results are achieved in our XFEL application for ε in the range of 0.05–0.2. In new applications we
suggest that the user try this range of ε and choose one based on empirical performance. The same method
can be implemented for any exponential family. Another potential solution to the invertibility problem—not
pursued here—is to discard the pixels with Ȳ (j) = 0.

6 Experiments

We apply ePCA to a simulated XFEL dataset, and an empirical genetics dataset, comparing with PCA.

6.1 XFEL images

We simulate n0 = 70, 000 noiseless XFEL diffraction intensity maps of a lysozyme (Protein Data Bank
1AKI) with Condor (Hantke et al., 2016). We rescale the average pixel intensity to 0.04 such that shot
noise dominates, following previous work (e.g., Schwander et al., 2012). To sample an arbitrary number n of
noisy diffraction patterns, we sample an intensity map at random, and then sample the photon count of each
detector pixel from a Poisson distribution whose mean is the pixel intensity. The images are 64 pixels by 64
pixels, so p = 4096. Figure 1.1 illustrates the intensity maps and the resulting noisy diffraction patterns.

6.1.1 Covariance estimation

For covariance estimation, we vary the sample size n in the range 3 ≤ log10(n) ≤ 5. We fix the rank of each
estimator to be 10, though other choices lead to similar results. The diagonally debiased, heterogenized, and
scaled covariance estimates Sd, She, Ss each improve on the sample covariance S (Fig. 6.1) in MSE. The
largest improvement is due to diagonal debiasing, but scaling leads to the smallest MSE.

Figure 6.2 summarizes the error of eigenvalue estimation. The ePCA eigenvalues are indeed much closer
to the true eigenvalues than the eigenvalues of the debiased or sample covariance matrices Sd or S. The
estimation error for ePCA eigenvalues is small regardless of sample size.
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Figure 6.1: Error of covariance matrix estimation, measured as the spectral norm (left) and Frobenius norm
(right) of the difference between each covariance estimate (Sample, Debiased, Heterogenized, Scaled) and
the true covariance matrix.

Figure 6.2: Error of eigenvalue estimation for the top 5 eigenvalues, measured as percentage error relative
to the true eigenvalue, for XFEL data. We plot the mean and standard deviation (as error bars) over 50
Monte Carlo trials.

We visualize the eigenvectors (or eigenimages) for XFEL diffraction patterns in Figure 6.3. The ePCA
eigenvectors—those of the heterogenized matrix She—accurately estimate two more eigenimages with small
eigenvalues than alternative methods. This shows that ePCA significantly improves on PCA for covariance
estimation in XFEL data.

Figure 6.3: XFEL Eigenimages for γ = 1/4, ordered by eigenvalue
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The ePCA/heterogenized eigenvectors 1 to 2 in Figure 6.3 appear misaligned with the corresponding
true eigenvectors. A likely explanation is that the top eigenvectors have similar eigenvalues, leading to some
reordering and rotation in the estimated eigenvectors. Therefore, we also report the error of estimating
the overall low-rank subspace, for rank r = 10, measured as the estimation MSE of the projection matrix
UrU

T
r . Other values of r lead to comparable results. Figure 6.4a clearly shows that the ePCA/heterogenized

covariance matrix best estimates the low-rank subspace inhabited by the clean data.

(a) (b)

Figure 6.4: a) Subspace estimation error for XFEL data. We plot the mean and standard deviation (as error
bars) over 50 Monte Carlo trials. b) HGDP dataset: PC scores of 20 CEU samples after standardization
(SD, left) and homogenization/HWE normalization (HW, right).

6.1.2 Denoising

Finally, we report the results of denoising the XFEL patterns. We compare “PCA denoising” or “vanilla
projection”, i.e., orthogonal projection onto sample or ePCA/heterogenized eigenimages; and EBLP denois-
ing. PCA denoising results in clear artifacts, while the reconstructions after EBLP denoising are always the
closest to the clean images (Fig. 6.5). In EBLP denoising, our scaled covariance matrix leads to much better
results than the sample covariance matrix. EBLP also does better when measured by reconstruction mean
squared error, MSE := (pn)−1

∑n
i=1 ‖X̂i −Xi‖2.

We also compare ePCA to the exponential family PCA method based on alternating minimization pro-
posed by Collins et al. (2001) in Figure 6.6. ePCA is faster and recovers the images with higher accuracy,
as measured by MSE (see the caption of Figure 6.6). Our experiments with variance stabilizing transforms,
such as the Anscombe (Anscombe, 1948) and Freeman-Tukey transforms (Freeman and Tukey, 1950), all
gave denoising results significantly worse than standard PCA (results not shown due to space limitations).
This may be because the known inverse transforms (e.g., Makitalo and Foi, 2011) are ineffective in the
photon-limited regime.

6.2 HGDP dataset

We also apply ePCA to a subset of the Human Genome Diversity Project (HGDP) dataset (Li et al., 2008),
which contains Single Nucleotide Polymorphism (SNP) markers obtained from human samples. We obtained
a homogeneous random set of n = 20 Caucasian samples from the CEU cohort, typed on p = 120, 631 SNPs.
We removed SNPs that showed no variability, with p′ = 107, 026 SNPs remaining. For each SNP we imputed
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Figure 6.5: Sampled reconstructions using the XFEL dataset (n = 16, 384; p = 4096), fixing the rank of
covariance estimates at r = 10. Color scale of each reconstruction clipped to match that of clean images.

Figure 6.6: Comparing various methods’ sampled reconstructions of the XFEL dataset (n = 1000; p = 4096),
fixing the rank estimate for each method to r = 8. For reference, the MSE for noisy images is 0.0401. We
also note that ePCA took 13.9 seconds, while Collins et al. (2001)’s exponential family PCA took 10900
seconds, or 3 hours, to finish running on a 2.7 GHz Intel Core i5 processor.

missing data as the mean of the available samples. We then computed the PC scores starting from two
covariance matrices: (1) the one obtained after usual standardization of each feature to have unit norm, and
(2) Sh obtained by using our homogenization method, which in this case agrees with HWE normalization
as defined in e.g., Patterson et al. (2006) (see Sec. 4.3). In Fig. 6.4b we see that homogenization/HWE
normalization apparently leads to a clearer structure in the PC scores than standardization. Two samples
on the standardized PC scores appear to be extreme outliers, but our data is a homogeneous random sample
and we do not expect outliers. This suggests that standardization is more sensitive to outliers or artifacts.
These results are in line with the existing empirical observations about the superiority of HWE normalization
(Patterson et al., 2006).
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J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance
matrices. Annals of Probability, 33(5):1643–1697, 2005.

R. Basri and D. W. Jacobs. Lambertian Reflectance and Linear Subspaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(2):218–233, 2003.

F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large
random matrices. Advances in Mathematics, 227(1):494–521, 2011.

T. Bhamre, T. Zhang, and A. Singer. Denoising and covariance estimation of single particle cryo-EM images. Journal
of Structural Biology, 195(1):72–81, 2016.
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A Appendix

A.1 Proof of Theorem 3.1

Let µ = EY = EA′(θ) and B0 = EY Y > = Cov [Y ] + µµ> = Σx + diag[EA′′(θ)] + µµ>. Let ‖ · ‖a denote a
generic matrix norm, such as the operator norm or the Frobenius norm. By the triangle inequality and the
Cauchy-Schwarz inequality

E[‖Sd − Σx‖a] = E

[
‖ 1

n

n∑
i=1

YiY
>
i − Ȳ Ȳ > − diag[V (Ȳ )]− Σx‖a

]
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≤ E

[
‖ 1

n

n∑
i=1

YiY
>
i −B0‖a

]
+ E

[
‖Ȳ Ȳ > − µµ>‖a

]
+ E

[
‖ diag[V (Ȳ )]− diag[EA′′(θ)]‖a

]
≤

[
E‖ 1

n

n∑
i=1

YiY
>
i −B0‖2a

]1/2

+ E
[
‖Ȳ Ȳ > − µµ>‖a

]
+ E

[
‖diag[V (Ȳ )]− diag[EA′′(θ)]‖a

]
We now consider the Frobenius and operator norms separately. For the Frobenius norm, using

E
[
‖ diag[V (Ȳ )]− diag[EA′′(θ)]‖Fr

]
= E

[
‖V (Ȳ )− EA′′(θ)‖

]
and Propositions A.3, A.4, and A.6, we find

E[‖Sd − Σx‖Fr] .
p√
n
m4 +

p

n
+
‖µ‖√p
√
n

+

√
p
√
n
.

Now, given that m4 = maxi EY (i)4 is at least O(1), the second and the last term is of smaller order than
the first one. This leads to the bound E[‖Sd − Σx‖Fr] .

√
p
n

[√
p ·m4 + ‖µ‖

]
.

For the operator norm, using E
[
‖ diag[V (Ȳ )]− diag[EA′′(θ)]‖

]
≤ E

[
‖V (Ȳ )− EA′′(θ)‖

]
and Propositions

A.3, A.4, and A.7, we find

E[‖Sd − Σx‖] .
√
C(p)

(E‖Y ‖4)
1/2 + (log n)3(log p)2√

n
+
p

n
+
‖µ‖√p
√
n

+

√
p
√
n
.

This finishes the proof.

A.1.1 Sup-exponential properties

In this section we establish the sub-exponential property of our random variables. This is needed in the next
sections in proving the rates of convergence.

Proposition A.1. A random variable Y ∼ pθ(y) from the exponential family is sub-exponential.

Proof. The moment generating function of Y is E[exp(tY )] = exp(A(θ+ t)−A(θ)). Since B is differentiable
on an open neighborhood of θ, clearly E[exp(tY )] ≤ e for small t. Therefore, by the moment generating
function characterization of sub-exponential random variables given in (5.16) of Vershynin (2012), Y is
sub-exponential.

In the following proposition, we allow that the prior parameter θ is random, while requiring that it is
bounded.

Proposition A.2. Let Y ∼ pθ(y). If θ is random and supported on a compact interval, then Y is sub-
exponential.

Proof. By the characterization of sub-exponential random variables in (5.16) of Vershynin (2012), it is enough
to show that E[exp(A(θ + t) − A(θ))] ≤ e for small t. Suppose θ is supported on [a, b]. Since A(θ + t) is
continuously differentiable in a neighborhood of θ, we have |A(θ+t)−A(θ)| ≤ Ct|A′(θ)| ≤ Ct supθ∈[a,b] |A′(θ)|
for some C > 0, and for all t. Hence E[exp(A(θ + t) − A(θ))] ≤ E[exp(tC supθ∈[a,b] |A′(θ)|)] ≤ e. The last
inequality holds for sufficiently small t.

A.1.2 Auxiliary rates

Using the sub-exponential properties, we now prove the rates of convergence needed in the proof of Thm. 3.1
presented in Sec. A.1. Let K(i) = supq≥1 q

−1(EY (i)q)1/q be the sub-exponential norm of the i-th coordinate
of Y (see e.g., Vershynin, 2012, Sec 5.2.4). By assumption, these norms are uniformly bounded, so that
K(i) ≤ K <∞ for some universal constant K.
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Proposition A.3. E[‖V (Ȳ )− EA′′(θ)‖] .
√
p√
n

up to universal constant factors.

Proof. By the Cauchy-Schwarz inequality, [E‖V (Ȳ ) − EA′′(θ)‖]2 ≤ E[‖V (Ȳ ) − EA′′(θ)‖2]. Since the latter
quantity decomposes into d mean squared error terms, it is enough to show that each of them is bounded
by C/n up to universal constant factors. Now,

E[V (Ȳ (i))− EA′′(θ(i))]2 ≤ 2E[V (Ȳ (i))− V (EȲ (i))]2 + 2E[V (EȲ (i))− EA′′(θ(i))]2.

For the first term, by the Lipschitz property of V , and by the definition of K, we have

E[V (Ȳ (i))− V (EȲ (i))]2 ≤ L2E[Ȳ (i)− EȲ (i)]2 = n−1L2VarY (i) ≤ n−1L2EY (i)2 ≤ n−1cL2K2.

For the second term, notice that A′′(θ(i)) = V (E[Ȳ (i)|θ(i)]). Denoting for convenience Z = Ȳ (i), α =
θ(i), this reads A′′(α) = V (E[Z|α]), and thus T := V (Eα)−EV (E[Z|α]) = E {V (Eα)− V (E[Z|α])} . Hence,

by the Cauchy-Shwarz inequality and by the Lipschitz property of V , ET 2 ≤ E {V (Eα)− V (E[Z|α])}2 ≤
L2E(Eα − E[Z|α])2. Finally, the term E(Eα − E[Z|α])2 = Var(Ȳ (i)|θ(i)) = n−1Var(Y (i)|θ(i)) ≤ n−1cL2K2

since Y (i) is sub-exponential with norm at most K. Putting together all bounds, we obtain E[V (Ȳ (i)) −
EA′′(θ(i))]2 . n−1 up to universal constant factors. By the remark in the beginning of the argument, this
finishes the proof.

Proposition A.4. E[‖µµ> − Ȳ Ȳ >‖a] . p
n +

‖µ‖√p√
n

up to universal constant factors, where ‖ · ‖a denotes

the Frobenius norm or the operator norm.

Proof. Clearly ‖ab>‖a = ‖a‖‖b‖. Then

‖aa> − bb>‖a = ‖ − a(b− a)> − (b− a)a> − (b− a)(b− a)>‖a
≤ ‖(b− a)(b− a)>‖a + ‖a(b− a)>‖a + ‖(b− a)a>‖a by the triangle inequality

= ‖b− a‖2 + 2‖a‖‖b− a‖.

Using this, by Proposition A.5, E[‖µµ> − Ȳ Ȳ >‖a] ≤ E[‖µ− Ȳ ‖2] + 2E[‖µ‖‖µ− Ȳ ‖] . p
n +

‖µ‖√p√
n
.

Proposition A.5. We have E[‖Ȳ − µ‖2] . p
n and E[‖Ȳ − µ‖] .

√
p√
n

up to universal constant factors.

Proof. By the Cauchy-Schwarz inequality, E[‖Ȳ − µ‖]2 ≤ E[‖Ȳ − µ‖2]. Then by the definition of the subex-
ponential norm K, we have E[Y (i) − EY (i)]2 ≤ E[Y (i)]2 ≤ cK2. Hence E[‖Ȳ − µ‖2] = n−1

∑p
i=1 E(Y (i) −

EY (i))2 ≤ n−1cpK2. This finishes the proof.

Proposition A.6 (Bounding the deviation of the second moment estimator for Y : Frobenius norm). Let

Ti = 1
n

(
YiY

>
i −B

)
and Vn =

∑n
i=1 Ti. Then E

[
‖Vn‖2Fr

]
. p2

n m4.

Proof. Since the Yi are independent and identically distributed, and ETi = 0, we have

E
[
‖Vn‖2Fr

]
= E

[
‖

n∑
i=1

Ti‖2Fr

]
= nE‖T1‖2Fr =

1

n
E(‖Y1Y >1 ‖2Fr+‖B‖2Fr−2Tr(Y1Y

>
1 B)) =

1

n
(E(‖Y1‖2)2−Tr(B2)).

Now we can bound E(‖Y1‖2)2 ≤ p2 maxi EY1(i)4 . p2m4, proving the desired claim.

Proposition A.7 (Bounding the deviation of the second moment estimator for Y : Operator norm). Let
Ti = 1

n

(
YiY

>
i −B

)
and Vn =

∑n
i=1 Ti. Then

E
[
‖Vn‖2

]1/2 ≤√C(p)
∥∥E [V 2

n

]∥∥1/2
+
√
C(p) ·

(
E
[
max
i
‖Ti‖2

])1/2

.
√
C(p)

(E‖Y ‖4)
1/2 + (log n)3(log p)2√

n
.
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Proof. The first inequality follows directly from Theorem 5.1 in Tropp (2016). Now we find an explicit
expression for the right hand side. For the first term, since the Yi are independent and identically distributed,
and the Ti are centered, EV 2

n = E(
∑n
i=1 Ti)

2 = nET 2
1 = 1

n (E‖Y1‖2Y1Y >1 −B2). Since EV 2
n and B2 are positive

semi-definite, so ‖E‖Y1‖2Y1Y >1 −B2‖ ≤ ‖E‖Y1‖2Y1Y >1 ‖, we have
∥∥E [V 2

n

]∥∥ ≤ 1
n‖E(‖Y1‖2Y1Y >1 )‖.

Now for any fixed vector u with ‖u‖ = 1, u>E(‖Y1‖2Y1Y >1 )u = E‖Y1‖2(u>Y1)2 ≤ E(‖Y1‖2)2. This gives
the first term, E‖Y ‖4.

For the second term, by the triangle inequality and (a+ b)2 ≤ 2(a2 + b2),

E
[
max
i
‖Ti‖2

]
=

1

n
E
[
max
i
‖YiY Ti −A‖2

]
≤ 2

n
(Emax

i
‖YiY Ti ‖2 + ‖B‖2).

When taking square roots as required by the theorem statement, the second term in this inequality can
be bounded by ‖B‖ ≤ Tr(B) = E‖Y ‖2 ≤ (E‖Y ‖4)

1/2. For the first term in the bound, defining Qi =∑d
j=1 Yi(j)

2, we have ‖YiY Ti ‖2 = Q2
i , so for m ≥ 2

E
[
(max

i
Qi)

2
]
≤ E

[
(

n∑
i=1

Qmi )
2/m

]
≤

(
n∑
i=1

E[Qmi ]

)2/m

= (nE[Qm1 ])
2/m

,

where the second inequality follows from Jensen’s inequality. Choosing m = log n, and then applying
Lemma A.8 the last term can be upper bounded by

e2
(

(E[Qm1 ])
1/m
)2

. [EQ1 + (log n)3(log p)2]2 . [Tr(B) + (log n)3(log p)2]2.

Finally, we use Tr(B) = E‖Y ‖2 ≤ (E‖Y ‖4)
1/2 again. Putting these together leads to the result.

Lemma A.8. Let Y (1), · · · , Y (p) be independent random variables distributed according to an exponential

family Y (j) ∼ pθ(j) for deterministic θ(j) ∈ R. Let Q =
∑p
j=1 Y (j)2. Define κ :=

√
e

2(
√
e−1) < 1.27 and let η

be any value in (0, 1). Then for any m ≥ 1

(E[Qm])1/m ≤ (1 + η)E[Q] + C
κ

2
(1 + 1/η)Km3(log p)2

where C is a small constant.

Proof. By Theorem 8 in Boucheron et al. (2005), we get the following Rosenthal-type bound:

(E[Qm])
1/m ≤ (1 + η)E[Q] +

κ

2
m(1 + 1/η)

(
E
[(

max
j≤p

(Y (j)2)

)m])1/m

We proceed to bound the second term on the right hand side:

E
[(

max
j≤p

(Y (j)2)

)m]1/m

= E
[
max
j≤p

Y (j)2m
]1/m

≤ E


∑
j≤p

Y (j)2m log p

1/log p


1/m

≤

∑
j≤p

E
[
Y (j)2m log p

]1/m log p

where the last claim follows from Jensen’s inequality. This can be further bounded as

p
1/m log p

(
max
j≤p

E
[
Y (j)2m log p

])1/m log p

. K(m log p)2.

On the last line, we have used the moments characterization of sub-exponentiality.
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A.1.3 Proof of Theorem 4.2

It is enough to study the singular values of Yw = n−
1/2YcD−

1/2
n , where Yc = Y − ~1Ȳ > is the centered data

matrix, because Sh + Ip = Y>wYw. Our strategy to show that Yw is well approximated by the noise matrix
n−

1/2E , which is more convenient to study directly.
Indeed, since n−

1/2E has independent entries of mean 0, variance 1/n, and fourth moment of order 1/n2,
the distribution of the squares of its singular values converges almost surely to the standard Marchenko-
Pastur distribution with aspect ratio γ. Moreover, its operator norm converges to 1 + γ

1/2 a.s. (Bai and
Silverstein, 2009).

This implies that the same two properties hold for the auxiliary matrix Ya = n−
1/2(Y −~1A′(θ)>)D

−1/2
n .

Indeed, we can bound the operator norm of the difference E = n−
1/2E − Ya as

‖E‖ = ‖n−1/2E(Ip − diag[A′′(θ)]
1/2D−

1/2
n )‖ ≤ ‖n−1/2E‖‖Ip − diag[A′′(θ)]

1/2D−
1/2

n ‖.

Now ‖n−1/2E‖ → 1 + γ
1/2 a.s., and ‖Ip − diag[A′′(θ)]

1/2D
−1/2
n ‖ → 0 a.s. by Lemma A.9 presented below.

This shows that the spectral distribution and operator norm of Ya converge as required.
Finally, the difference of the homogenized data matrix and the auxiliary matrix has rank one: Yw−Ya =

n−
1/2~1(A′(θ)> − Ȳ >)D

−1/2
n . Therefore Yw has the same Marchenko-Pastur limiting spectrum as Ya. This

finishes the proof of Theorem 4.2.

Lemma A.9 (Convergence of empirical homogenization matrix). We have ‖Ip − diag[A′′(θ)]
1/2D

−1/2
n ‖ → 0

a.s.

Proof. Since |1− x1/2| ≤ |1− x| for all x ≥ 0, it is enough to show that

max
i

∣∣∣∣1− A′′(θ(i))

V (Ȳ (i))

∣∣∣∣ = max
i

∣∣∣∣A′′(θ(i))V (Ȳ (i))

∣∣∣∣ ∣∣∣∣1− V (Ȳ (i))

A′′(θ(i))

∣∣∣∣→ 0.

From the expression on the right, we see that it is enough to show that maxi |1− V (Ȳ (i))/A′′(θ(i))| → 0
almost surely. To use the Borel-Cantelli lemma, we show how to bound the probability of V (Ȳ (i))/A′′(θ(i))−
1 ≥ ε; the other direction is analogous. Since we assumed V is Lipschitz continuous with a uniform Lipschitz
constant L, denoting δ = ε/L, it is enough to bound the probability that Ȳ (i) − A′(θ(i)) ≥ δA′′(θ(i)). We
can write

P
{
Ȳ (i)−A′(θ(i)) ≥ δA′′(θ(i))

}
= P

{∑n
j=1 Yj(i)

n
≥ A′(θ(i)) + δA′′(θ(i))]

}
≤ E exp{t

n∑
j=1

Yj(i)− nt[A′(θ(i)) + δA′′(θ(i))]}.

The moment generating function of Yj(i) is exp[A(θ(i) + t) − A(θ(i))], so the last quantity equals
exp[n{A(θ(i) + t)−A(θ(i))− tA′(θ(i))− tδA′′(θ(i))}]. For t small enough (depending on A′′ on a neighbor-
hood of θ(i)), this is less than exp[−nδA′′(θ(i))/2]. Since we assumed that A′′(θ(i)) > c for some universal
constant c > 0, we get the bound exp[−nδc/2].

We get a similar upper bound for the probability of deviation in the other direction. We conclude that
for some contants C, c′ > 0,

∑
n Pr(maxi |1 − V (Ȳ (i))/A′′(θ(i))| > ε) ≤ C

∑
n n exp[−c′n] < ∞. hence by

the Borel-Cantelli lemma, maxi |1− V (Ȳ (i))/A′′(θ(i))| → 0 almost surely. This finishes the proof.
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