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1 Introduction

In this paper, I will describe my research under the supervision of Professor
Howard Stone and Dr. Rodolfo Brandão in Summer 2023, on the sedimen-
tation of a slender elastic filament in a low Reynolds number fluid. This
problem was considered in a classical paper by Xu and Nadim in 1994 [1],
where they linearized the equations of elasticity and used resistive force the-
ory to find a unique deflection profile that looks like a “U” shape.

Figure 1: Deflection profile found in [1]

However, a numerical study by Lagomarsino et.al. in 2005 [2] that mod-
eled the filament as a series of beads found additional “W”-like shapes in the
limit that the filament was highly flexible, contradicting uniqueness of Xu
and Nadim’s shape. This motivated our work to find deflection profiles as a
function of filament flexibility.

2 Problem formulation

2.1 Elastohydrodynamic model

Consider an elastic filament (density ρ∗, bending modulus B∗, length 2ℓ∗,
cross-sectional radius a∗) falling under gravity (gravitational acceleration g∗)
through a quiescent fluid (viscosity µ∗). The asterisk indicates a dimensional
quantity. Our focus is on steady states, where the deformable filament trans-
lates at a constant velocity U∗. We assume that the centerline of the filament
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Figure 2: Plot of bending amplitude (displacement at the end of the filament)
as a function of B, a dimensionless measure of flexibility. In the small B limit,
the shape recovers the Xu and Nadim solution, but at large B the solution
becomes nonunique and a novel “W” shape appears.

is planar and symmetric about a line passing through its midpoint in the di-
rection of g∗ (see Fig. 3); these symmetry conditions directly imply that U∗
and g∗ are collinear.

In accordance with the above assumptions, we introduce Cartesian unit
vectors {êx, êy} and write

g∗ = −g∗êy, U∗ = −U∗êy. (1)

Adopting a reference frame comoving with the filament, we parameterise the
filament centerline by

x∗(s) = x∗(s∗)êx + y∗(s∗)êy (2)

where s∗ is the arc length coordinate measured from the midpoint −ℓ∗ ≤
s∗ ≤ ℓ∗; due to the assumed symmetry of the centerline, we can restrict our
analysis to half of the filament 0 ≤ s∗ ≤ ℓ∗. The tangent unit vector is

t̂ =
dx∗

ds∗
, (3)

which can be used to define a tangent angle θ(s∗) via the relation

t̂ = cos θ êx + sin θ êy. (4)

In terms of θ, the normal unit vector can be expressed as

n̂ = sin θ êx − cos θ êy, (5)
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Figure 3: Sketch of the problem setup

and the local curvature as

κ∗ =
dθ

ds∗
. (6)

Then, we have the familiar relations

d t̂

ds∗
= −κ∗n̂, (7a)

d n̂

ds∗
= κ∗t̂. (7b)

Since the filament is in dynamic equilibrium, its shape is determined by
local force and torque balances. The local force balance reads

f (i)∗ + f (g)∗ + f (h)∗ = 0, (8)

where f
(i)
∗ , f

(g)
∗ and f

(h)
∗ are, respectively, the internal, gravitational, and

hydrodynamic forces per unit length, which we now describe.. The internal
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force per unit length can be written as

f (i)∗ =
dF∗

ds∗
, (9)

where
F∗ = T∗ t̂+N∗ n̂ (10)

is the cross-sectionally averaged internal force. The gravitational force per
unit length is

f (g)∗ = −πa2∗ρ∗g∗êy. (11)

To model hydrodynamic effects, we assume that the filament is sufficiently
small and slender, such that Resistive Force theory for Stokes flows is appli-
cable, and

f (h)∗ = − 4πµ∗

ln 1/ϵ

(
1

2
t̂t̂+ n̂n̂

)
· u∗, (12)

where ϵ = a∗/ℓ∗ ≪ 1 is the aspect ratio of the filament. We note that (12)
only depends on the local orientation of the filament relative to the flow;
hence, it neglects nonlocal effects, such as those due to the finite size of the
filament, whose contribution to the hydrodynamic force are at least a factor
of (ln 1/ϵ)−1 smaller than (12).

Substituting (1) and (9)–(12) into (8) and decomposing the force balance
into its tangential and normal components with the aid of (4)–(6), we arrive
at the tangential force balance

dT∗

ds∗
+ κ∗N∗ +

1

2

4πµ∗U∗

ln 1/ϵ
sin θ − πa2∗ρ∗g∗ sin θ = 0, (13)

and the normal force balance

dN∗

ds∗
− κ∗T∗ +

4πµ∗U∗

ln 1/ϵ
cos θ + πa2∗ρ∗g∗ cos θ = 0. (14)

The torque balance for a planar curve can be written as a single scalar equa-
tion,

dM∗

ds∗
−N∗ = 0, (15)

where M∗ is the internal bending moment in the filament. For an elastic
filament with a cylindrical cross-section, the common constitutive description
is M∗ = B∗κ∗. Substitution of this relation into (15) furnishes

dκ∗

ds∗
=

N∗

E∗I∗
. (16)
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Lastly, we specify the boundary conditions for the problem. At the midpoint
(s∗ = 0), we impose the symmetry conditions

θ(0) = N∗(0) = 0, (17)

as well as
x∗(0) = 0, (18)

which specifies the origin of the coordinate system. At the end (s∗ = ℓ∗), we
impose free-end boundary conditions,

T∗(ℓ∗) = N∗(ℓ∗) = κ∗(ℓ∗) = 0. (19)

2.2 Dimensionless problem

We normalize lengths by ℓ∗, forces by πa
2
∗ρ∗g∗ℓ∗, and velocities by πa2∗ρ∗g∗

µ∗

ln 1/ϵ
4π

.
Then, with dimensionless quantities denoted without an asterisk, our model
reduces to a system of first-order differential equations,

dT

ds
+ κN = (1− 1

2
U) sin θ, (20a)

dN

ds
− κT = (U − 1) cos θ, (20b)

dκ

ds
= ηN, (20c)

dθ

ds
= κ, (20d)

dx

ds
= cos θ, (20e)

dy

ds
= sin θ, (20f)

defined in the domain s ∈ [0, 1], corresponding to half of the filament. The
problem involves six unknown functions (T,N, κ, θ, x, y) and the unknown
speed U ; therefore, we impose seven boundary conditions

θ(0) = N(0) = κ(1) = N(1) = T (1) = x(0) = y(0) = 0 (21)

Importantly, the dimensionless problem depends on a single dimensionless
group, which appears in equation (20c),

η =
λ∗g∗ℓ

3
∗

E∗I∗
, (22)
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which we refer to as the compliance of the filament [3]; it corresponds
to the ratio of the characteristic gravitational force to the elastic force, and
therefore serves as a measure of the flexibility of the filament.

We note that the problem governing T , N , κ, θ and U , given by (20a-d),
is uncoupled from the problem governing x and y given by (20e-f). It will be
convenient for the subsequent analysis to substitute (20c-d) into (20a-b) to
arrive at a problem involving θ, T and U only,

dT

ds
+

1

η

dθ

ds

d2θ

ds2
=

(
1− 1

2
U

)
sin θ, (23a)

1

η

d3θ

ds3
− dθ

ds
T = (U − 1) cos θ, (23b)

with boundary conditions

θ(0) = 0,
d2θ

ds2
(0) = 0 (24a)

dθ

ds
(1) = 0,

d2θ

ds2
(1) = 0, T (1) = 0. (24b)

Once the angle θ is determined from the above problem, the shape of the
filament can be calculated by straightforward integration of (20e-f).

3 Small deformation solutions

We seek solutions to these equations in the small amplitude limit for small
and large compliances: That is, θ(s) ≪ 1, T (s) ≪ 1. This also implies
u − 1 ≪ 1, from (23b). Note that the trivial solution θ = T = 0, u =
1 is always a solution, corresponding to a flat filament. Expanding these
unknowns in a general way, we write

θ ∼ δθΘ (25a)

T ∼ δTT (25b)

u− 1 ∼ δuU (25c)
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where δθ, δT , δu are functions of η, and Θ(s), T (s), U are O(1) functions
or constants independent of η. Furthermore, we assume that derivatives are
of the same order as their parent functions.

With this general scaling, noting also that to lowest order, sin θ ∼ δθΘ
and cos θ ∼ 1, (23) and (24) become

δTTs +
δ2θ
η
ΘsΘss ∼

1

2
δθΘ (26a)

δθ
η
Θsss − δθδTΘsT ∼ δuU (26b)

Θ(0) = 0, Θss(0) = 0 (27a)

Θs(1) = 0, Θss(1) = 0, T (1) = 0 (27b)

Comment: For nontrivial solutions, the nonlinear term in (26b) cannot
be subdominant for any η. If it were, (26b) would become

δθ
η
Θsss ∼ δuU

=⇒ Θsss ∼ U

=⇒ Θ ∼ 1

6
Us3 + c2s

2 + c1s+ c0 (28)

Then, applying (27), this implies that Θ = 0, which is the trivial solution.

3.1 η ≪ 1 limit

In the limit of small compliances, where the filament is weakly flexible, our
system does not support nontrivial solutions. To see this, we note that
from the comment above, δθδTΘsT must be dominant in (26b), so we either
have δθδTΘsT ∼ δθ

η
Θsss or δθδTΘsT ≫ δθ

η
Θsss. If the former is true, we

have δT ∼ 1
η
, and if the latter is true, we have δT ≫ 1

η
, both of which are

inconsistent with (26a) and small deformations.
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3.2 η ≫ 1 limit

For large compliances, (26a) simplifies: δθ,
1
η
≪ 1, so

δ2θ
η
ΘsΘss ≪

1

2
δθΘ

=⇒ δTTs ∼
1

2
δθΘ

=⇒ δθ = δT (29)

Then we can eliminate the angle Θ in (26b) and write (26) as a single equation
in the tension and velocity:

δT
η

Tssss − δ2T TssT ∼ 1

2
δu U (30)

Attempting the three term balance, we get the scalings δθ = δT = 1
η
, δu = 1

η2
,

leading to the fourth order BVP

Tssss − TssT ∼ 1

2
U (31)

with boundary conditions

Ts(0) = 0, Tsss(0) = 0 (32a)

Tss(1) = 0, Tsss(1) = 0, T (1) = 0 (32b)

This is a 4th order nonlinear eigenvalue problem. Dr. Brandão carried
out detailed asymptotics in the large U ≫ 1 limit, but I will not report
those results here. This leads to a sequence of eigenvalues that yield the
proportionality coefficient in the asymptotic behavior y(1) ∼ O( 1

η2
), u ∼

O( 1
η
).

4 Numerical work

Using numerical pathfollowing with ‘chebfun’ in MATLAB, we can trace out
a bifurcation diagram for the velocities or amplitudes of solutions as func-
tions of compliance η. In the large η limit, we can superimpose asymptotic
predictions, using the results of Dr. Brandão’s analysis.
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(a) linear scale

Figure 4: velocity bifurcation diagram with asymptotic predictions

(a) linear scale

Figure 5: amplitude bifurcation diagram with asymptotic predictions

These figures show the characteristic turning point observed in Lago-
marsino et.al., which indicates the nonuniqueness of solutions. Since η =
B/8, we observe this point at the same scale as their numerics. However, we
can now interpret this in terms of our dimensionless force balance: at large
η, a balance exists between all three terms of elasticity, fluid force, and grav-
ity, which is nonlinear through the effects of curvature. Large compliance
is precisely the condition that curvature matters, and therefore we expect
nonlinearity to play an important role.
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5 Conclusion

In this project, we were able to write down a simple model for a complicated
problem: one where hydrodynamics, elasticity, and gravity all interact, and
where fluid force influence shape and vice versa. The force balance, inspired
by Kurzthaler et.al. [3], revealed that in the limit of slender filaments, only
the compliance governs the solution to the system. We may also include
effects of slenderness, which would lead to a 2 parameter system. This would
then reduce to the Xu and Nadim limit as η → 0, which is missed in this
model.
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