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Abstract

We consider a model that allows to compare binary scoring rules
according to how well they elicit truthful, but also precise reporting
from experts. This is a new perspective on the incentive structure
of scoring rules: traditionally, scoring rules are only required to be
proper, i.e. make the expert reveal his true belief.
Specifically, we define an incentivization index that, in our model,
lets compare any two strictly proper scoring rules by their power to
entice the expert to perform costly effort in order to improve the pre-
cision (i.e. absolute error) of his report before submitting it. Fur-
thermore, we find the unique proper scoring rule with the optimal
incentivization index.
In addition, we extend our results to the more general setting where
precision is defined as the `-th (` ≥ 1) absolute moment of error.



1 INTRODUCTION

1 Introduction

Note: This writeup and all results discussed therein (whether or not the respective definition,
claim, lemma or theorem mentions it explicitly) are fully based on our paper [Neyman et al.,
2020] coauthored with Eric Neyman and Matt Weinberg. The paper is quite general in its results,
and the proofs are very involved analytically. Thus, our goal is to motivate the model we propose
in the paper, as well as give a high-level view of its proofs. Thus, for instance, we consider here
only the results obtained for a locally adaptive expert (see the definition below), while [Neyman
et al., 2020] deals also with experts we call globally adaptive. Some other non-central results of
the paper have been left out as well. The interested reader should refer to the full version of the
mentioned paper for complete proofs.

Imagine an industrial company UmbrellaCo wanting to know, on a given day, what the chance
of rain is for tomorrow. To this end, they contract a weather forecasting company, which naturally
employs an expert in rain forecasts. Suppose that the expert can precisely simulate the next day,
and see if it is raining or not on the simulated day. The simulation can be run as many times
as the expert pleases. The total cost (resources + time spent running the computer test) of each
simulation to the expert is c dollars, for some c > 0. The expert will estimate the chance of rain
tomorrow as h+1

n+2 if he has run the simulation n times and saw rain in h of them. Equivalently,
we model the event of rain tomorrow as a Bernoulli coin flip with some unknown probability p,
and the expert starts with the prior value 0.5 on p and performs a Bayesian update of it as he
sees a sequence of coin flips drawn from that distribution.
Here is how the contract between UmbrellaCo and the expert works: UmbrellaCo chooses an

increasing function f : [0, 1]→ R (which the expert knows). Suppose the expert has reported the
chance of rain tomorrow to be p ∈ [0, 1]. On the next day, UmbrellaCo will observe whether it
has rained or not. In the case it rains, it pays f(p) dollars to the expert. In the case that it does
not, it pays him f(1− p) dollars. In light of f being increasing, this is to represent that if it has
indeed rained, then the company will pay more (closer to f(1)) for larger predicted probabilities,
while if it has not rained, then the company will pay more for smaller predicted probabilities.
Of course, in order to game the system and receive a higher payment, the expert may report p

while he actually believes that the chance of rain tomorrow is q 6= p. From his point of view, the
expert would receive expected payout qf(p) + (1 − q)f(1 − p) from the company. To make the
expert always say the truth, the company therefore chooses f to be such that for every q ∈ [0, 1],
the arg maxp∈[0,1]{qf(p) + (1− q)f(1− p)} = q, and this argmax is unique.

Definition 1.1 (Good [1952]). Such a function f is called a (strictly) proper scoring rule. If
the argmax is allowed to not be unique, it is called a weakly proper scoring rule. The payoff the
expert receives from reporting truthfully is then denoted

R(p) := pf(p) + (1− p)f(1− p).

It may not be obvious that proper scoring rules exist, but they do – in fact, there is an infinite
variety of such rules; Savage [1971] discusses some well-known ones and their general properties.
With f a proper scoring rule, the expert will definitely report his true belief to the company.

Next, UmbrellaCo should really wish to know: how precise will the report be? Clearly, the more
simulations the expert has performed, the closer his p will get to the true chance of rain. How
many times will he want to simulate the rain? Let us model his behavior as locally adaptive: at
any number of performed simulations, the expert performs another one if and only if his expected
increase in payout from UmbrellaCo from doing so exceeds c, the cost of an extra simulation.

Definition 1.2. The locally adaptive expert “flips the coin" (simulates the next day) for as long
as the expected increase in payout for the next flip exceeds c:
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1 INTRODUCTION

How the expert simulates rain is now a stochastic process with a well-defined stopping rule. In
addition to the above, the company UmbrellaCo supposes that the chance of rain tomorrow is
itself distributed uniformly (UmbrellaCo’s executive board consists of aliens from Mars and just
does not know that due to the peculiarities of the Earth’s weather, the chances of rain on various
days throughout the year are definitely not uniformly distributed). The company is planning
to use the expert’s services for long enough that what matters to it is the expected expert’s
prediction error over many days. Mathematically, this is

Definition 1.3.
Errorf (c) := E[|p̂− p|],

where p is the random variable denoting the chance of rain, p̂ the expert’s estimate. Expectation
is over the randomness of p and of the simulation process.

We may now ask the question: which proper scoring rule f minimizes this error, for fixed c? It
turns out that such a rule does not exist! If f is a proper scoring rule, then any affine rescaling
of this rule is also proper: 2f, 2f + 10, 3f, 10f , and so on. Clearly, f + 5 or 3f pay more than
f to the expert. So, he will simulate more on average. As one increases either a ≥ 1 or b ≥ 0,
af + b yields Errorf (c)→ 0.

Lemma 1.4. As c→ 0, the expert’s pay from UmbrellaCo tends to
∫ 1

0 R(x)dx.

Proof. See Neyman et al. [2020].

Lemma 1.5. The expert’s reward R(p) is minimized at p = 1
2 .

Proof. R = pf(p) + (1− p)f(1− p) is convex, and note it is symmetric around 1
2 on [0, 1].

Using the two lemmas together, we can rescale any proper scoring rule f so that its reward as
c→ 0 is unit (

∫ 1
0 R(x)dx = 1), and the minimum pay the expert can receive from UmbrellaCo is

R(1
2) = 0. Therefore, we may define normalized proper scoring rules as follows.

Definition 1.6 (Normalized proper scoring rule). A rule f which: 1) forces the expert to always
report truthfully, 2) pays the expert at least 0 dollars, 3) as c → 0, pays the expert 1 dollar on
average.

Given this definition, we may update our question from above, and we ask: how does Umbrel-
laCo choose among normalized proper scoring rules so as to minimize Errorf (c)? The result is
provided by the following surprising theorem. For the meaning of ‘analytically nice’, please go to
Section 3.

Theorem 1.7. There exists a unique normalized proper scoring rule, gopt, which is ‘analytically
nice’ and which, when compared to any other ‘analytically nice’ f , satisfies

Errorgopt(c) < Errorf (c) for all 0 < c < Cf , for some Cf that depends on f.

This rule is (where k is the rescaling constant):

gopt(p) =

k
∫ p

1
2

5

√
(1−t)6
t7

dt, if p < 0.5

k
∫ p

1
2

5

√
t

(1−t)2dt, if p ≥ 0.5

In the case UmbrellaCo does not seek an optimal scoring rule, but instead wants to compare
two proper scoring rules of its own choice, it will be able to do so using this notion that we
introduce in Neyman et al. [2020]:
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1.1 Outline of this paper and the proofs 1 INTRODUCTION

Definition 1.8 (Incentivization index). For any ’analytically nice’ normalized proper scoring rule
f , we let its incentivization index be:

Indf :=

∫ 1

0

4

√
x(1− x)

R′′(x)
dx.

The incentivization index maps each nice enough scoring rule to a number. Its significance is
that for any given nice enough scoring rules, f and g, we would be able to tell which one results
in a smaller expert’s error by simply computing and comparing the index for f and for g, which
can be done due to the index’s closed form.

Theorem 1.9. For any two ‘analytically nice’ normalized proper scoring rules f, g,

Indf < Indg =⇒ Errorf (c) < Errorg(c) for all 0 < c < Cf,g, for some Cf,g.

Here, again, the constant Cf,g is only dependent on f and g.

Our main result in Neyman et al. [2020], which proves Theorem 1.7 and Theorem 1.9, is:

Theorem 1.10. If f is an ’analytically nice’ proper scoring rule, then as c→ 0,

4

√
1

c
· Errorf (c)→

√
2

π
· 4
√

2 · Indf .

More generally, if Error`f (c) := E[|p̂− p|`] for ` ≥ 1, then as c→ 0:

c−`/4 · Error`f (c)→ µ` · 2`/4 · Ind`f ,

where

Ind`f :=

∫ 1

0

(
x(1− x)

R′′(x)

)`/4
dx

is the generalized incentivization index, and µ` =
2`/2Γ( `+1

2
)

π1/2 is the `th moment of the standard
Gaussian distribution.

1.1 Outline of this paper and the proofs

In Section 2, we briefly discuss some related work.
Section 3 contains a detailed outline of the proofs in our paper Neyman et al. [2020]. Specifically,

in Section 3.1 we define how ‘analytically nice’ we require our scoring rules to be, and we mention
that many well-known proper scoring rules fall into this group.
In Section 3.2, we discuss in a relatively detailed manner two simple results, which capture two

essential characteristics of the expert’s sampling process: First, we show a Taylor expansion-based
formula on his expected increase in reward from round to round. Second, we demonstrate that
as c → 0, the expert will continue to flip for a guaranteed number of times, as an asymptotic
function of c.
Section 3.3 contains a detailed description of the probability space that we set up so that the

expert’s coin-flipping trajectories are coupled for all possible values of the true rain probability p.
Second, we define a sequence of events {ΩN} that have probability 1−o(1), and guarantee that the
expert’s estimate will never stray from the true value of p by ‘too much’. This is very important
in the later course of the proof, since assuming ΩN holds allows to show uniform convergence in
p of many p-dependent random variables associated with the expert’s coin-flipping process.
Section 3.4 first outlines the proof of how to capture the expert’s stopping time quite precisely

as a function of the random variable p and c, for all p except at the (vanishing as c→ 0) tails of
the interval [0, 1]. It then concludes by showing how to obtain, from this bound on the stopping
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3 PROOFS, OUTLINED

time, tight bounds on the value of the expert’s error for any given p, c and, ultimately, how this
results in the limit formula for the expert’s expected error over all p declared in Theorem 1.10.
Note that much of Section 3 is just a detailed outline of the proofs in Neyman et al. [2020].

This is intentional: the proofs of the lemmas which we choose not to fully present here are very
involved, and it is of more value to show the high-level logic of these proofs here; the interested
reader should consult the original paper Neyman et al. [2020].
Finally, we give a brief conclusion, in which we highlight why our study is important in the

context of incentivization via proper scoring rules.

2 Related Work

In a seminal paper, Brier [1950] defined the quadratic scoring rule (and described its applications
in weather forecasting, like we do in this manuscript). Good [1952] formally defined the notion
of scoring rule; he also brought in the logarithmic rule. The richness of the class of proper
scoring rules, which incentivize truthful reporting by the expert, was explored soon after the
introduction of scoring rules; see for instance Savage [1971]. Various properties of proper scoring
rules, as applied to statistical prediction and estimation, are studied by Gneiting and Raftery
[2007] and Dawid and Musio [2014]. Winkler et al. [1996] consider the “ex-ante" and the “ex-post"
perspective on scoring rules; our view in this manuscript is ex-ante: the scoring rule is viewed as
inducing a reward function, which the expert, in reporting his belief, takes into account.
We look to rank scoring rules by how well they incentivize the expert to acquire more precise

knowledge of the distribution before they report their estimate. Interestingly, Tsakas [2019]
considers the opposing perspective to ours. He recognizes that, for instance, in polling, it might be
important to elicit the participants’ pure, unaltered beliefs about a certain question. Therefore,
he looks for scoring rules that incentivize the expert as much as possible to not perform any
research and report his prior. Our model can be viewed as a restriction of Clemen [2002]’s model,
where the expert is also propelled by the scoring rule to not just report his prior belief but do
more research about the to-be-predicted distribution. In his model, somewhat more generally, the
cost of each sample in the sampling sequence may be different to the expert. However, Clemen
does not obtain rigorous results about how to compare different proper scoring rule by their
incentivization power, which we do.

3 Proofs, Outlined

Here, we will refer to the expert’s running estimate after n coin flips as Qn. His stopping time
will be denoted nstop, and his marginal increase in expected reward at each flip will be called ∆n.

3.1 Analytically nice proper scoring rules

Here, we shed light on which scoring rules yield to our analysis. The formal definition of this
class of binary proper scoring rules, called respectful in Neyman et al. [2020], is as follows:

Definition 3.1. A proper scoring rule f is analytically nice if its reward function R satisfies:

1. R is strongly convex on (0, 1), namely, R′′ is lower-bounded by some a > 0 on all of (0, 1)

2. R′′′ is Riemann integrable on any [a, b] ⊆ (0, 1).

3. For any fixed ε, one can find constants t, C such that for all 0 < c < C,

|R′′′(x)| ≤ R′′(x)

c
1
6
−ε√x(1− x)

, for all ct ≤ x ≤ 1− ct.
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3.2 The probability space and its consequences 3 PROOFS, OUTLINED

An important question is: how rich is the defined class of scoring rules? Turns out, it is quite
rich. First, we may see that the third condition is implied by an easier one: that |R′′′| is bounded
on (0, 1). With this in mind, we see that all polynomial scoring rules (i.e. scoring rules f(x) that
are polynomial in x) are ‘analytically nice’. Indeed, the reward R corresponding to a polynomial f
is also polynomial, and thus clearly satisfies Conditions 1 and 2, and also satisfies Condition 3 by
virtue of its derivatives (and in particular R′′′) being bounded on [0, 1]. Therefore, in particular,
the seminal Brier’s quadratic scoring rule Brier [1950], which is expressed through its reward
function R(x) = x2 + (1− x)2, is also ‘analytically nice’.
Somewhat more involved is to show that another famous proper scoring rule, the logarithmic

rule given by f(x) = lnx, is also ‘analytically nice’. Its R′′′ is not bounded on (0, 1), and so one
cannot easily check the 3rd Condition of the definition above. However, the following (intricate)
Claim shown in Neyman et al. [2020] ensures that also the logarithmic scoring rule, and a variety
of other rules with diverging R′′′, are analytically nice.

Claim 1. The 3rd condition of the definition above is implied, if R′′′ is bounded on any compact
subset of (0, 1) and moreover there are k 6= 0 and r such that limx→0 x

rR′′′(x) = k.

To conclude this discussion, we note that Neyman et al. [2020] proves a Weierstrass approxi-
mation theorem-based result showing that for a wide variety of proper scoring rules, there exists
an arbitrary good approximation of those rules by polynomial ones (which are analytically good).
Therefore, in that sense, a wide variety of proper scoring rules are approximately analytically
good.

3.2 The probability space and its consequences

In order to simultaneously reason about the coin-flipping processes for all possible values of p
in [0, 1], we construct a common probability space for all these processes. Define the sequence
(ξn)n≥1 of iid. random variables each having uniform distribution on [0, 1]. Then for each n ≥ 1
and for all 0 ≤ p ≤ 1, we define the empirical process Qn(p) := 1

n+2(1 +
∑n

i=1 1{ξi≤p}). It is
easy to see that for any given value p ∈ [0, 1], Qn(p) is precisely the running expert’s estimate
obtained from n Bernoulli distributed random variables with parameter p.
Now we will provide an asymptotic (as n → ∞) upper bound on the fluctuations of the

running estimate around the true value of p, and this bound will hold w.h.p. uniformly for
all p ∈ [1/n, 1 − 1/n]. Before doing so, we define for every N the event ΩN , by defining its
complement as

ΩN :=
∞⋃
n=N

n−1⋃
j=0

{∣∣∣∣Qn( jn
)
− j

n

∣∣∣∣ >
√
j(n− j)
2n1.49

}
.

This definition of ΩN is justified by the following lemma, which shows that given ΩN , for all
p ∈ [1/n, 1−1/n] the fluctuations of the running estimate around the true value of p are uniformly
bounded as n→∞.

Lemma 3.2. There is a large enough N∗ such that, for any N ≥ N∗, conditioned on ΩN , it
holds for all n ≥ N that

|Qn(p)− p| ≤
√
p(1− p)
n0.49

∀n ≥ N, and
1

n
≤ p ≤ 1− 1

n
.

Proof. Take an arbitrary n ≥ N and an arbitrary p ∈ [1/n, 1 − 1/n]. Observe that there is an
index jp such that 1 ≤ jp ≤ n− 2 and jp

n ≤ p ≤
jp+1
n . Now, by monotonicity of Qn(·) we have

jp
n
−
√
jp(n− jp)
2n1.49

≤ Qn
(
jp
n

)
≤ Qn(p) ≤ Qn

(
jp + 1

n

)
≤ jp + 1

n
+

√
jp(n− jp)
2n1.49

,
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3.3 Stopping time estimation 3 PROOFS, OUTLINED

implying

|Qn(p)− p| ≤ 1

n
+

1

2n1.49
max{

√
jp(n− jp),

√
(jp + 1)(n− 1− jp)}.

Using that the right-hand side is maximized at p either 1/n or 1−1/n, and that
√
p(n− p) under

the same conditions, we obtain after dividing through by
√
p(n− p) and plugging say p = 1/n

in, that
|Qn(p)− p|√
p(n− p)

≤ 1

n
√
p(1− p)

+

√
2n

2n1.49
≤ 1

n0.49
.

Furthermore, we demonstrate in Neyman et al. [2020] that the event ΩN is extremely likely,
the probability of its complement being exponentially small in N .

Lemma 3.3. The probability of the event ΩN decreases exponentially fast in N :

Pr[ΩN ] = O(e−N
0.01

).

3.3 Stopping time estimation

This section begins with an asymptotic formula for the expected gain in reward from flipping one
more time, as the overall number of flips increases. Then we determine how small c should be
so that regardless of the true value of p and the flips’ outcomes, the expert will not stop flipping
until a set time n.

3.3.1 Expected increase in reward from flipping one more time

Lemma 3.4. If R is twice differentiable at every point in (0, 1), then

∆n+1 =
Qn (1−Qn)

2(n+ 3)2

[
QnR

′′(c1) + (1−Qn)R′′(c2)
]
, (1)

where c1 ∈
[
Sn+1
n+3 , Qn

]
and c2 ∈

[
Qn,

Sn+2
n+3

]
(in particular, each ci ∈ [Qn − 1

n , Qn + 1
n ]).

Proof. We use Taylor expansion with the remainder in Lagrange form. Observe that the proof
below only requires that R be twice differentiable, and R′ (resp. R′′) be continuous, on the open
interval (0, 1). This is because

[
Sn+1
n+3 ,

Sn+2
n+3

]
⊂ (0, 1) for all n.

To prove eq. (1), we specifically let δ = 1
n+3 . Then, we note that the expected gain is equal

to QnR(Sn+2
n+3 ) + (1−Qn)R(Sn+1

n+3 )−R(Qn), and expand both R(Sn+2
n+3 ) and R(Sn+1

n+3 ) around Qn.
As Sn+2

n+3 = Qn + (1 − Qn)δ and Sn+1
n+3 = Qn − δQn, which is checked by using the definitions of

Qn, δ, we have

QnR

(
Sn + 2

n+ 3

)
+ (1−Qn)R

(
Sn + 1

n+ 3

)
−R(Qn)

= Qn

(
R(Qn) + (1−Qn)δR′(Qn) +

1

2
(1−Qn)2δ2R′′(c2)

)
+ (1−Qn)

(
R(Qn)− δQnR′(q) +

1

2
δ2Q2

nR
′′(c1)

)
−R(Qn)

=
Qn(1−Qn)δ2

2

(
QnR

′′(c1) + (1−Qn)R′′(c2)
)
.

Substitute back δ to obtain the desired statement.
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3.4 A precise computation of bounds of the expert’s stopping time 3 PROOFS, OUTLINED

3.3.2 Guaranteeing a fixed number of coin flips

Lemma 3.5. Assume R is twice differentiable and strongly convex on (0, 1). Then there exists
a constant C(R) which only depends on the reward function R (but not on p), such that for any
given n ≥ 1, nstop ≥ n for any cost c ≤ C(R)

n3 .

Proof. Observe that by Equation (1), the expected gain in reward between steps n, n+ 1 equals
∆n+1 = 1

2(n+3)2
Qn (1−Qn) [QnR

′′(c1) + (1−Qn)R′′(c2)] for some c1, c2 ∈ [0, 1]. Writing Qn(1−
Qn) = (Sn+1)(n−Sn+1)

(n+2)2
, we see that the numerator attains its minimum value n + 1 when either

Sn = 0 or Sn = n. Hence, Qn(1−Qn) ≥ n+1
(n+2)2

≥ 1
5n for all n ≥ 1.

Next, due to strong convexity of R, we may let CR := minx∈(0,1)R
′′(x) > 0. Therefore, by the

above
∆n+1 ≥

1

2(n+ 3)2
· 1

5n
[Qn · CR + (1−Qn) · CR] =

CR/10

n(n+ 3)2
≥ CR/160

n3
.

So setting c less than or equal to CR
160n

−3 guarantees that up until at least time n, the flipping
will continue, because indeed for any time m < n, the expected gain from flipping once more is
at least CR/160

m3 > CR/160
n3 ≥ c. Q.e.d.

3.4 A precise computation of bounds of the expert’s stopping time

Now, roughly speaking, we show that as the guaranteed number of flips increases, nstop(p) ∼
p(1−p)R′′(p)

2 c−1/2(1±O(c
1

300 )). This is easy to expect from the above Taylor-based formula for the
expected marginal reward: indeed, one can say ∆n+1 is approximately p(1−p)R′′(p)

2n2 , and equating
this to the marginal cost c of an extra sample (the stopping condition for the expert) implies that

nstop ≈
√

p(1−p)R′′(p)
2c . However, the formal proof of this is nontrivial.

Lemma 3.6. Suppose ΩN holds for a given N . Suppose the scoring rule is ‘analytically nice’,
and recall the parameter t from its definition. Then, there are constants K,C such that for all
0 < c < C,√
p(1− p)R′′(p)

2c

√
1−Kc1/300 ≤ nstop ≤

√
p(1− p)R′′(p)

2c

√
1 +Kc1/300 for all 2ct ≤ p ≤ 1−2ct.

Proof. First, one ensures, by Lemma 3.5, that indeed at least N coins are flipped, so that we may
indeed use that ΩN holds. With a small technical assumption on c, one can see from ΩN holding
that

Qn ∈ [p±
√
p(1− p)(αc)0.49],

for some constant α. Having this quite tight bound on Qn, one then recalls the Taylor-based
formula for the marginal expected reward,

∆n+1 =
Qn (1−Qn)

2(n+ 3)2

[
QnR

′′(c1) + (1−Qn)R′′(c2)
]
. (2)

We would like to be able to show R′′(c1) ≈ R(p) and R′′(c2) ≈ R(p) in order to simplify this
expression, and then elicit nstop from equating the marginal reward to c, as discussed above. This
is achieved via an intricate, but elementary, analytic lemma:

Claim 2.

|R′′(p+ ε)−R′′(p)| ≤ R′′(p)(er|ε| − 1), for all ε such that p, p+ ε ∈ [ct, 1− ct].
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3.4 A precise computation of bounds of the expert’s stopping time 3 PROOFS, OUTLINED

The proof of this claim relies on expressing the difference on the left-hand side as an integral
of R′′′, and this is the main place where we use the most unintuitive, 3rd part of the definition of
analytically nice scoring rules, which places a constraint on the rate of change of R′′′.
As a result of this claim, we can show that for i = 1, 2, |R′′(ci) − R′′(p)| ≤ 8α0.49R′′(p)c1/300.

Plugging this, as well as the above bound on Qn that used ΩN , into Lemma 3.4, one can see for
K small enough that

∆n+1 ∈ [
p(1− p)R′′(p)(1±Kc1/300)

2n2
],

and equating ∆n+1 with the marginal cost c, we get the declared bound on nstop.

Having tight guarantees on the magnitude of nstop, depending on p, c, we are now in the position
to tightly and uniformly (in p) bound the error of the expert over a range of true values of p.
Formally, letting err(p, c) be the random variable denoting the expected error of the expert for
particular values of p, c, we have the following result:

Lemma 3.7. For ` ≥ 1 and µ` the `th moment of a standard normal variable, and Nc = (αc)1/3,

c−`/4 E[(err(p, c))`|ΩNc ] = (1± o(1))µ`

(
2p(1− p)
R′′(p)

)`/4
for all 2ct ≤ p ≤ 1− 2ct.

Here, the o(1) term is with respect to c.

Proof. The crucial observation of the proof, which is quite long and involved, is that if we take n0

to be
√

p(1−p)R′′(p)
2c

√
1−Kc1/300, the lowest possible value of nstop at given p, c according to the

preceding lemma, then the expert’s guess will not change much at all after the n0th step. Thus,
the final expert’s error err(p, c) will be approximable, in the limit, by |Qn0 − p|.
The proof first shows the following claim:

E[|Qn0 − p|`|ΩN ] = µ`

(
p(1− p)
n0

)`/2
(1 + o(1)).

The proof of the claim relies on the Berry-Esseen theorem, a result which implies that the distri-
bution function of the expert’s guess becomes uniformly close to the CDF of a standard Gaussian
variable.
After that, it is possible to show also that the contribution of all remaining steps from n0

to nstop to the expert’s error vanishes in the limit: i.e., uniformly over all p ∈ [2ct, 1 − 2ct],
E[|Qn0−Qnstop |`ΩN ]

E[|Qn0−p|`|ΩN ]
→ 0 as c→ 0. This claim and the above one give the desired conclusion of the

lemma.

Finally, we arrive at the proof of the main theorem 1.10.

Proof of Theorem 1.10. The proof essentially consists of integrating the preceding lemma over all
p ∈ [2ct, 1−2ct], then showing that the expert’s error integrated over the tails [0, 2ct)∪ (1−2ct, 1]
is negligible, and finally, noting that one can remove the conditioning on Ω seen in the preceding
lemma. The last point is due to Lemma 3.3, which shows that the complement of ΩN has
exponentially vanishing probability in N .

Now, to conclude this section, we make a note about how we obtained the optimal scoring
rule, as given in Theorem 1.7. This is a result of pointwise minimization of the integrand of the
incentivization index formula, subject to the constraints that ensure a scoring rule is (weakly)
proper. These constraints are derived e.g. in Neyman et al. [2020] and have a very simple algebraic
form; see Section 4 of Neyman et al. [2020]. Thus, the optimization problem becomes solvable
simply by writing down its Lagrangian that includes the weak-properness constraints. Finally,
the paper shows that the obtained optimal rule is ‘analytically good’, so the incentivization index
makes sense for it.
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4 Conclusion

Proper scoring rules, which incentivize the expert to report truthfully, have been known since the
1950s. It is the only well-studied incentivization property of scoring rules. But then, assuming
truthfulness, another very important incentivization issue is: how does the choice of a proper
scoring rule motivate the expert to make his prediction as precise as possible – that is, do more
research/simulations before reporting his belief? This is important: the expert might not refine
his prediction and just make a baseless prediction of p that seems plausible to him at the moment.
This would be an honest but useless prediction. Our model is the first one to rigorously study
this question. The model is stylized, but nonetheless captures a variety of real-life scenarios, even
with the assumption c→ 0 that we make.
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