
Representing Words in a Geometric Algebra

Arjun Mani
Princeton University

arjuns@princeton.edu

Abstract

Word embeddings, or the mapping of words to vectors, demonstrate interesting
properties such as the ability to solve analogies. However, these models fail to
capture many key properties of words (e.g. hierarchy), and one might ask whether
there are objects that can better capture the complexity associated with words.
Geometric algebra is a branch of mathematics that is characterized by algebraic
operations on objects having geometric meaning. In this system objects are linear
combinations of subspaces rather than vectors, and certain operations have the
significance of intersecting or unioning these subspaces. In this paper we introduce
and motivate geometric algebra as a better representation for word embeddings.
Next we describe how to implement the geometric product and interestingly show
that neural networks can learn this product. We then introduce a model that
represents words as objects in this algebra and benchmark it on large corpuses; our
results show some promise on traditional word embedding tasks. Thus, we lay the
groundwork for further investigation of geometric algebra in word embeddings.

1 Motivation

Words are complex creatures; a single word has one (or multiple) semantic meanings, plays a
particular syntactic role in a sentence, and has complex relationships with different words (simple
examples of such relationships are synonyms and antonyms). The representations of words as vectors,
and the ability of these models to capture some of this complexity, has been a seminal advance in the
field of natural language processing. Such word embedding models (first introduced by Mikolov et
al. in 2013 [1, 2]) learn a mapping from words to vectors by following the basic principle that “a
word is characterized by the company it keeps". Using this idea the model is trained by sliding a
window along a large text corpus and using the center word in each window to predict the words in
the surrounding context 1. Should two words appear in similar contexts, they are encouraged to have
similar vector representations.

The vector space that results from training these models turns out to be surprisingly rich; in particular
training such a model buys us two useful properties we should want from objects representing
words. The first is a notion of similarity: computing the cosine similarity between two words gives
us neighbors of a word that are semantically or syntactically similar. For example, neighbors of
the word ‘president’ might be ‘leader’, ‘government’, ‘presidency’, and ‘cabinet’. The second
and perhaps more surprising property is that relationships between words are captured as vector
directions in this space. This allows the the model to solve analogies; the canonical example is
v(king) − v(man) + v(woman) = v(queen); because the model learns some the vector direction
represented by a change in gender, the closest vector to the vector sum on the left is indeed the word
queen. The ability to express word similarity and solve analogies already make vectors seem like a
compelling way in which to represent words.

1This describes the "skip-gram" model, one of the two variants of word2vec. Please see 2.1 for details.

With this said, word2vec represents a (limited) attempt at capturing the complexity associated with
words. If we were to step back and ask what might we want from objects representing words, we see
that such a model does not capture several attractive properties. Here are some of these properties:

• Hierarchy: Hierarchial structure is an important feature of words (indicated by the orga-
nization of WordNet [3] into hierarchies). A space of objects representing words should
be able to indicate that labrador is a type of dog, which is a type of animal. The analogy
solving capabilities of word2vec might give us a weak is-type-of relationship, but ideally
there should be an intrinsic way to represent hierarchy.

• Part of Speech: The role a word plays in a sentence (noun, verb, etc.) should be captured
by the object representing that word. This is not captured by word2vec.

• Closedness: The principal operation in word2vec is the dot product, which reduces two
vectors to a scalar. However, we might want some notion of closedness, where in addition
to a dot product we have some operation F : O ×O → O that maps two words to another
word. In this sense a word can act both as an object and as an operator. For example, the
word mother could operate on father such that mother× father = grandmother.

It is worth noting that these are aspirational goals for a set of objects representing words. However,
they form the motivation for this paper, where we introduce objects in a geometric algebra as a
better way to represent words. The rest of the paper is organized as follows. In Sec. 2 we provide
formal background on word embedding models and then introduce geometric algebra and motivate it
as having good theoretical properties as word representations. Subsequently we describe how the
geometric product is implemented and integrated into word embedding models. We then present
experiments showing promising results on traditional word embedding tasks, motivating further
exploration of this space.

2 Background

2.1 Word Embeddings

Word embedding models come in two flavors, (1) “skip-gram", in which the center word is used to
predict each word in the context, and (2) “CBOW", where the context words are typically mean-
pooled and then used to predict the center word. We focus on the former which we use throughout
the paper.

Formally, for the skip-gram model a training example consists of a center-context word pair (c, o).
The model consists of two weight matricesW,W ′ ∈ RV×d, where V is the size of the vocabulary and
d is the dimension of the word embeddings. The dot product is taken between the vector representing
the center word in W and the vector representing the context word in W ′; this dot product wTc w

′
o

represents the unnormalized probability (logit) of these words appearing in the same context. When
normalizing it is intractable to take a softmax over the entire (often very large) vocabulary. Thus,
instead Mikolov et al. introduce a technique called negative sampling. A logistic loss is applied on
top of the logit wTc w

′
o, such that the model is trained to maximize the probability of o appearing in the

context of c. Then N negative samples {c, ni}Ni=1 are drawn from a distribution over the vocabulary,
and the model should minimize their dot-product similarity. The final maximum likelihood objective
looks like the following:

log σ(wTc w
′
o) +

∑
ni∼P (w)

log σ(−wTc w′ni
) (1)

Mikolov et al. introduce several tricks that significantly improve the performance of their model
(all of which we implement in our word2vec benchmark) [1]. In particular, they (1) discard words
that appear too rarely in the dataset using some empirically tuned threshold (typically 5-15), and
(2) subsample frequent words, in other words removing words from the dataset with probability
proportional to their frequency. The motivation behind the latter is to remove filler words from the
dataset which co-occur with other words indiscriminately. Details of these operations (e.g. which
distributions are used for negative sampling and subsampling) can be found in the original paper and
are not discussed here.

2

The entire word2vec model is differentiable and is typically trained using some gradient-based
optimizer such as Adam or SGD. The corpuses used to train these models tend to be large (a dataset
of 50-100 MB of text is usually seen as a minimum requirement to learn good-quality embeddings).

2.2 Geometric Algebra

Having briefly introduced word2vec, we now introduce the mathematics of geometric algebra and
motivate it as proving a useful alternative to vectors for word embeddings. At a high level, geometric
algebra consists of a set of objects (multivectors) endowed with a multiplication (the geometric
product). A useful starting point to understand multivectors is the basis elements e1, ..., en that span
the vector space Rn. In the geometric algebra Gn, the basis elements are not just vectors but spans
of vectors; for example G2 contains the basis element e1e2 which can be envisioned as the plane
spanned by the two unit vectors (see Fig. 1 for a visualization). In other words, the basis elements of
a geometric algebra represent subspaces; this is a key point, as it is the first of a recurring theme that
algebraic properties/operations in this space have geometric meaning (hence ‘geometric algebra’).
Since the basis elements of Gn represent spans of vectors, there are 2n basis elements (the powerset
of the basis vectors). A general multivector is then a linear combination of these basis elements or
subspaces (also called basis blades). For example, in G2 an example of a multivector is:

A = 5 + 3e1 + 4e2 + 6e1e2. (2)

The other important terminology is that of a grade. In Gn there are n+ 1 grades, where the grade of
a particular basis element is the dimension of the subspace. For example, the multivector above has
three grades (0 for scalar, 1 for e1 and e2, and 2 for e1e2). For a multivector A, the grade projection
〈A〉r mapsA to only its grade-r components; for example in the multivector above 〈A〉1 = 3e1+4e2.

Note that it is important to disentangle the definitions of a multivector that are basis-independent
and basis-dependent. The basis-independent definition of a multivector is a sum of blades, where
a blade is the outer product of r linearly-independent vectors. The outer product represents the
subspace spanned by these vectors, so a multivector is a sum of subspaces. A grade projection maps
to only those subspaces of a certain grade or dimension. The definition of multivectors above is
basis-dependent (I chose the basis of standard unit vectors and their spans because it makes it clearer
in the next section how to implement this product). However, the discussion below of the geometric
product is necessarily basis-independent.

Geometric algebra comes with a multiplication termed the geometric product. Although difficult to
define concisely in full generality, a convenient starting point is the geometric product of two vectors,
which is defined as:

ab =
1

2
(ab+ ba) +

1

2
(ab− ba) := a · b+ a ∧ b. (3)

The first term on the right is the familiar inner product, which outputs a scalar and is a commutative
operation. The second term is called the ‘outer product’ and is anti-commutative; it is zero when a
and b are parallel, and we can identify it with the signed area of the parallelogram spanned by a and b
(analogous to the cross product in three dimensions). In fact it is indeed this parallelogram which
is termed a bivector. More generally, the outer product of r linearly independent vectors (which is
equivalent to the geometric product if they are orthogonal) represents the subspace spanned by these
vectors. Note by the way that from the above equation it follows that e21 = 1 and e1e2 = −e2e1.

In general, the geometric product of two multivectors is AB =
∑
r,sArBs, where Ar and Bs are the

grade-r and grade-s components ofA andB respectively. An important theorem of geometric algebra
states that the geometric product ArBs consists of terms of grades r− s, r− s+2, ...r+ s− 2, r+ s.
The inner product is then roughly defined as the grade-(r − s) projection of this product (one might
observe from this two types of inner products, the other being the grade-(s − r) projection) and
the outer product as the grade-(r + s) projection of this product. (These statements are not vital to
understand.)

A natural question at this stage is why this product is useful. It happens that many of the algebraic
operations in this space have geometric interpretations. For example, take two blades Ar and Bs
(where again an r-blade is the outer product, or in other words the span of r linearly-independent

3

Figure 1: Pictorial representation of the elements of a geometric algebra. The top row shows the
scalar element, followed by a vector, bivector (span of two vectors), and trivector (span of three
vectors). A general multivector is a linear combination of such objects.
Figure credit: commons.wikimedia.org/wiki/File:N_vector_positive.svg

vectors). It can be shown that (1) the outer product between Ar and Bs represents the sum of
their subspaces (or 0 if they share a common vector), and (2) the left inner product represents the
orthogonal complement of Ar in Bs (and vice versa for the right inner product). These and other
properties contained within the geometric product create richer geometric interactions between the
multivectors representing words than the vector dot product. In particular, one could imagine the
following benefits of representing words as multivectors:

• More geometric objects = better at standard word embedding tasks: Because multivec-
tors are more complex objects and the geometric product encodes rich geometric interactions,
it is possible that a multivector space of words could perform better on the standard tasks
assigned to vector word embeddings, such as word similarity and analogy solving.

• Ability to represent hierarchy / syntax. The representations of words as subspaces and
the graded nature of the algebra offers opportunities to capture more complex aspects
of language. For hierarchy one could imagine assigning smaller grades to more specific
concepts and larger grades to more general concepts. The graded nature of the algebra offers
a natural possibility for creating extremely high-level groupings of words, and these grades
could also capture elements of syntax (an important example is part-of-speech). In general
it seems more natural to represent words and concepts as subspaces that span different
semantic and syntactic aspects.

• Words as Operators. Having a meaningful product that maps two word objects to another
object could give us the ability to use words as operators acting on other words. This could
be a very useful notion as described in the Introduction.

3 Implementing the Geometric Product

With geometric algebra introduced and motivated in the previous section, we now describe how we
implement the geometric product. In general, we can represent some multivector in Gn as a linear
combination of products of the basis vectors e1, ...en (example in Eq. (2)). These have the property
(generalizing Eq. 3) that e2i = 1 and eσ(1)...eσ(n) = (sgn(σ))e1...en, since the product of two
orthogonal vectors is anti-commutative. Thus for the product of two basis elements (i.e. two basis
blades) we know (1) the basis element in the product it maps to is the exclusive-or of the basis vectors
in each blade (if say e1 appears in both basis blades, we can permute the product such that it contains
e1e1, which disappears into a scalar). We also know (2) the sign of the product is the number of
swaps to rearrange the product into a basis element (which happens to be the number of inversions).
This gives us a natural way to compute the product by representing basis blades as binary vectors,
where element i is ’1’ if the blade contains ei. Concretely, the geometric product is implemented by

4

https://commons.wikimedia.org/wiki/File:N_vector_positive.svg

Figure 2: The figure above shows the loss curves of the PHM and FC layers on our synthetic dataset
of multivector products. Note that both models successfully learn the geometric product; however,
the PHM parametrization is able to learn the product quicker and the loss converges more rapidly.

computing a 3D sparse tensor with each dimension 2n; the element (i, j, k) represents the coefficient
of basis blade k in the product from multiplying basis blades i and j. The product is then the tensor
product of the first multivector A with this tensor, followed by a dot product of this matrix with B.

To make this more concrete, we can take an example in G2. Let’s say we are multiplying two
multivectors:

(a1 + a2e1 + a3e2 + a4e1e2)(b1 + b2e1 + b3e2 + b4e1e2).

Due to the properties above, we would find that the coefficient of e1 in the product is a1b2 + a2b1 −
a3b4 + a4b3 (we expand the product, and the reason for the negative sign is that e2e1e2 = −e1 by
anti-commutativity. The full product can be written as M = Ab, where b is the vector of coefficients
for the second multivector and A is the matrix given by:

a1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ a2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+ a3

0 0 1 0
0 0 0 −1
1 0 1 0
0 −1 0 0

+ a4

0 0 0 1
0 0 1 0
0 −1 0 0
1 0 0 0

 (4)

.

The tensor is the stack of these signed binary matrices, and this matrix is above is exactly the tensor
product of A with the tensor. This provides a concrete example of how we implement the geometric
product.

3.1 Neural Networks Can Learn the Geometric Product

Since the geometric product of two multivectors can be written as a matrix product, it is interesting
to explore whether a neural network can learn the geometric product. We train an simple one-layer
linear network (y = Wx+ b) on a synthetic dataset we construct of 100 training examples in G2;
concretely 100 random multivectors are generated and multiplied by a random ‘hidden’ multivector
to produce an output multivector. Given the input and output multivectors, the linear network is able
to learn the matrix product corresponding to the hidden multivector (i.e. the matrix described in the
previous section) (see Fig. 2)

We also evaluate a neural network parametrization introduced in [4]. This parametrization replaces
fully-connected layers with “parametrized hypercomplex multiplication” (PHM) layers y = Hx+ b.

5

These layers are termed as such because they generalize several products such as the quaternion
product and our own geometric product. Here H is derived as a sum of n matrix Kronecker products:

H =

n∑
i=1

Ai ⊗ Si,

whereAi and Si are learned parameters and the Kronecker product is a block matrix where each block
of A⊗ S is aijS. The authors show that replacing FC layers with this parametrization (where the
dimensions ofA and S are only constrained such that the shape ofH is the original shape ofW) leads
to state-of-the-art performance across several NLP tasks such as machine translation. They motivate
this parametrization by observing that it could subsume several types of more complex products such
as the quaternion product and its generalizations; hence the success of this approach provides some
empirical motivation for our work. This parametrization indeed subsumes the geometric product;
we can observe from Eq. 4 that if we constrain Ai to be 1 × 1 then H could learn the geometric
product. Interestingly, this parametrization leads to faster convergence of the loss compared to the
fully-connected layer (Fig. 2). The reason that we constrain the model to carrying out the geometric
product rather than allowing it to learn the product it wants is the following: geometric algebra gives
us a space of objects that have some notion of geometric interpretability, and this is a key aspect of
word embeddings.

4 Word2MVec: Multivector Word Embedding Model

In our approach we aim to represent words as multivectors that interact with the geometric product.
We note two difficulties that arise in developing such a model:

1. For the CBOW model, we would replace the mean operation on the context vectors with
the geometric product of all the context multivectors. However, with a typical window size
of 10 we found empirically that this led to coefficient explosion (which we were unable
to easily fix with normalization or better initialization). Thus, we focus on the skip-gram
model (which achieves similar word2vec performance) where the training examples are
(context, center) word pairs.

2. More fundamentally, the geometric product between two multivectors is itself a multivector.
However, the logits of the model are scalars; geometric algebra does not easily admit an
operation that reduces multivectors to scalars. To solve this we add anN×1 fully-connected
layer on top of the model that maps the multivector product to a scalar. This effectively
allows the model to learn which information to extract from the geometric product.

Solving these issues allows us to arrive at our word embedding model. For a given (center, context)
training example, we take the geometric product between the multivectors momc, where mo is the
context and mc the center multivector. Similar to word2vec, the center and context word multivectors
are found by looking up the parameter matrices W ∈ RV×d and W ′ ∈ RV×d respectively. This
is followed by a fully-connected layer that maps the resulting product to a logit, followed by the
familiar logistic loss. Exactly as in word2vec we draw negative samples from a distribution over the
vocabulary and compute their logits through the geometric product + FC layer. This model, which
we call Word2Mvec, is shown in Fig. 1.

This is the model that we use in all experiments and compare to word2vec. However, we note that
due to the fully-connected layer Word2Mvec has more parameters than Word2vec (assuming same
dimension of vectors/multivectors). To disentangle this component we introduce a second baseline
which we term Word2Vec+FC; the dot product is replaced with an element-wise product followed
by a fully-connected layer. This model has exactly the same number of parameters as Word2Mvec.

One important thing to note: although we are replacing the dot product with the geometric product in
Word2Mvec, we still retain the notion of dot product similarity. This is because words that appear in
similar contexts will tend to have similar representations and thus similar multivector coefficients;
this similarity can be still be quantified through the dot product. This is significant, because it means
we don’t lose anything by shifting to multivectors but can potentially gain more from their more
complex algebraic and geometric structure.

6

Figure 3: Figure of the Word2Mvec model. The geometric product is taken between the center and
context multivectors, followed by a fully-connected layer that outputs an unnormalized probability.
Similar to word2vec, the center and context multivectors are found by looking up the parameter
matrices W ∈ RV×d and W ′ ∈ RV×d respectively.

Figure 4: Left: loss converges rapidly for World-Order Dataset. Right: Word2Mvec model learns
embeddings with good similarity properties on this small dataset.

5 Experiments

5.1 “World Order"

As a sanity check, we begin with a smaller corpus, the text “World Order" by Henry Kissinger. The
text is only 1.2MB, and so is not appropriate for any large-scale benchmarking of word embedding
models; however, we can use it to verify that our Word2Mvec model is successfully training. Indeed,
the loss does converge rapidly (within 50 epochs of 200 total epochs of training) and the model is
able to learn some notion of similarity. For example, the most similar words to ‘ronald’ are reagan,
papers, ford, and address; similarly the most similar words to ‘nuclear’ are struggle, capability, and
ideological (Fig. 4). Thus we can be satisfied that our geometric algebra based model is capable of
learning satisfactory word embeddings and move to a larger-scale corpus which is the focus of our
experiments.

5.2 Text8 Corpus

The text8 corpus consists of the first 100 million characters of Wikipedia (approximately 100 MB of
text). This is a sizable enough dataset to train word embedding models and analyze their performance.
We train the Word2Mvec model as well as the baseline Word2Vec and Word2Vec+FC models
described in Sec. 4. For all models we train for 10 epochs and use the Adam optimizer; we
experiment with different learning rate / batch size configurations, which are mentioned in the tables
which show our results. Throughout our experiments we use an embedding dimension of 128, which
represents multivectors in G7.

As discussed above, Word2Mvec conveniently retains the notion of dot product similarity. Thus, a
good starting point is to check whether Word2Mvec is learning embeddings that have reasonable
notions of similarity. Table 1 shows qualitatively this is indeed the case. Both the Word2vec and
Word2Mvec models demonstrate the ability to relate a given word to semantically and syntactically
similar words.

7

President Vice, Minister, Presidency, Presidential, Cabinet
Banana Pear, Potatoes, Beets, Plantations, Juice
Tennis Connors, Hockey, Sportsman, Borg, Wimbledon

Table 1: Example words and similarities learned by the Word2Mvec model. Similar words on the right
column are taken from the top ten most similar words to the words in the left column. Note that the
model learns an effective notion of similarity, both semantically (e.g. banana->pear, tennis->hockey)
and syntactically (e.g. president->presidential). This justifies what we have argued above that we
still retain the ability to compute cosine similarity for multivector word embeddings trained using
Word2Mvec.

Method Accuracy (%)
Word2Vec 10.49
Word2Vec+FC 15.72
Word2MVec 16.27

Table 2: Accuracies on the analogy-solving task with fixed hyperparameters lr = 0.002, batch size
1024. The Word2Mvec model outperforms both baselines.

5.3 Analogy Solving

Word vectors can successfully solve many analogies in the following way. Given for example
the analogy man:king:woman:___(man is to king as woman is to ___), we can compute the vector
v(king)−v(man)+v(woman). The vector closest to this (by cosine similarity) is v(queen) (although
an important trick to get this to work is to disallow the model from predicting any of the words in
the analogy itself). The text8 corpus is large enough that word vectors can demonstrate this ability.
We evaluate our models on a standard dataset of 19,943 analogies that range from semantic (e.g.
Son : Daughter : Husband : Wife) to syntactic (Young : Younger : Large: Larger). The accuracies
are shown in Table 2. For a fixed configuration of hyperparameters (lr = 0.002, batch size = 1024)
the Word2Mvec model slightly outperforms the two baselines; since the Word2Vec+FC model has
the exact same number of parameters, this indicates that representing words as multivectors over
vectors and taking the geometric product might have some benefit. It should be noted that this table
comes with caveats; the models seem unusually sensitive to hyperparameter tuning, and increasing
the batch size from 1024 to 5000 improves the accuracy of Word2Vec and Word2Vec+FC to 20.31%
and 20.17% respectively. However, at the very least this provides evidence that Word2Mvec is able
to learn analogies with comparable accuracy to current vector word embedding models.

5.4 Exploring Sparsity

An interesting question to ask is what happens to word vectors/multivectors when enforcing a sparsity
constraint. For example, we might enforce an `1 penalty on the coefficients λ||w||1, which encourages
most coefficients to go to zero. Interestingly, enforcing such a sparsity penalty when training the
model leads to highly interpretable dimensions. See Table 3 for examples of the words associated
with the highest magnitude coefficient for a particular dimension of the vector or multivector. For
both Word2Vec and Word2Mvec we find that introducing an `1 penalty creates a high level of
interpretability. A particular detail is of interest; we enforce the `1 penalty maxwi ||wi||1, i.e.
the maximum `1 norm from the word vectors/multivectors rather than the sum across all of them
as conventionally. We found that the traditional `1 penalty did not lead to as interpretable word
embeddings, possibly because our approach provides a more balanced tradeoff between accuracy
and sparsity (since the gradient would only act on one word for a given step). This is a novel finding,
as previous efforts to generate interpretable word embeddings have dismissed the `1 penalty as not
having high coherence and favoring more complex methods.

Multivectors offer an additional, natural notion of sparsity, that is sparsity by grade rather than by
coefficient. The idea is that each word should be restricted to a particular grade, or in other words a
linear combination of basis subspaces of fixed dimension. A possible motivation for such a sparsity

8

Word2Vec
Isomorphic, Automorphism, Idempotent, Bijective, Injective
Industrialized, Colonized, Subtropical, Westerly, Exporter
Quicker, Slower. Faster, Taller, Cheaper

Word2Mvec
Voltage, Latency, Throughput, Amplitude, Capacitance
Screenwriters, Improv, Cartoonists, Playwrights, Screenplay
Airplanes, Avionics, Helicopters, Boeing, Airlines

Table 3: Words with the highest magnitude for selected coefficients in the vector or multivector (e.g.
highest values of coefficient 44). For both the Word2Vec and Word2Mvec models, applying an `1
sparsity penalty results in a surprising amount of coherence for a given coefficient.

is clustering of words into extremely high-level semantic or syntactic examples; a natural example of
this is part-of-speech (e.g. nouns, verbs, adverbs, etc.), something which is not captured by word2vec.
Grade sparsity can be implemented using the technique of group sparsity, which is designed to
send entire coefficient groups to zero for predefined groups. In particular for a vector w, group
sparsity is computed as λ

∑G
g=1 ||wg||g, where G is the number of groups and wg is the slice of

coefficients in group g. The term ||wg||g is simply the `2 norm of the coefficients in group g, i.e.

||wg||g =
√∑g

j=1(w
(j)
g)2. For the Word2Mvec model, we experiment with applying group sparsity

to the model based on divisions of the basis elements by grade. Thus far limited experiments have
not shown any definitive kind of clustering created by enforcing group sparsity; however, the term
has been plagued by gradient instability and we intend to solve this and investigate this further.

5.5 Recognizing Sentence Boundaries

The text8 corpus is typically treated as one long stream of words with no sentence delimiters, and
training examples are collected across sentence boundaries. However, it is conceivable that respecting
sentence boundaries matters for capturing better syntax in the word embeddings. Thus, we experiment
with retraining the models in the previous section while only collecting (context, center) training
examples that appear in the same sentence. Interestingly, the word2vec and word2vec+FC models
improve by 1.23% and 0.75% respectively compared to Table 2 when trained in this way; by contrast
the wordmvec model’s performance decreases by 2.81%. This may be because respecting sentence
boundaries reduces the total number of training examples for the word2mvec model where more
training data is needed to capture information from the more complex geometric product.

5.6 Text9 Corpus

We have begun running experiments on the text9 corpus, which is approximately 10 times larger than
text8 and provides an even better test of the potential of geometric algebra embeddings. These results
are not yet conclusive; however it appears that representing words as multivectors may offer some
benefit for traditional word embedding tasks. The result to this effect is that when training word2vec
and Word2Mvec (lr = 0.002, batch size = 4096), the Word2Mvec model achieves 27.81% accuracy
on the analogy task, significantly higher than the word2vec model at 21.69%. This sizable gap in
accuracy is emphasized by the fact that hyperparameters were chosen based on what maximized
accuracy for word2vec on the text8 corpus. Since the multivector-based model is more complex and
likely requires more data for training, this indicates that providing a large-scale training set seems to
realize the benefits of such a representation most strongly. Further investigation is of course needed
into what kind of multivector space is learned by this model, but this indicates some level of promise.

6 Conclusion and Future Work

This report lays the groundwork for an investigation of geometric algebra as a representation of
word embeddings. We introduce and motivate multivectors and the geometric product as having
useful properties for word embeddings. We then implement this product and explore its performance
compared to standard vector word embedding models on first a smaller corpus and then larger

9

corpuses. We find some promising evidence that representing words as multivectors leads to improved
performance on standard word embedding tasks, and investigate the properties of sparse models for
both Word2vec and Word2Mvec. In the future we aim to investigate this claim further, as well as
examine some of the other properties we motivated in the introduction (hierarchy, closedness, etc.)
which may require larger corpuses like the text9 corpus we have begun exploring.

References
[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed rep-

resentations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

[2] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

[3] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[4] Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan, Anh Tuan Luu, Siu Cheung Hui, and Jie Fu. Be-
yond fully-connected layers with quaternions: Parameterization of hypercomplex multiplications
with 1/n parameters, 2021.

10

	Motivation
	Background
	Word Embeddings
	Geometric Algebra

	Implementing the Geometric Product
	Neural Networks Can Learn the Geometric Product

	Word2MVec: Multivector Word Embedding Model
	Experiments
	``World Order"
	Text8 Corpus
	Analogy Solving
	Exploring Sparsity
	Recognizing Sentence Boundaries
	Text9 Corpus

	Conclusion and Future Work

