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Abstract

With continually growing access to immune epitope sequence data, machine

learning approaches promise to greatly expand our theoretical understanding of the

immune system. Following a Restricted Boltzmann Machine peptide presentation

prediction algorithm (RBM-MHC), we propose an information theoretic approach

to the characterization of CD8+ T-cell epitope presentation by MHC-1 molecules.

For a given HLA-1 allele, RBM-MHC learns a probability distribution for the

corresponding epitope presentation space. Given this form, we demonstrate that

tools from information theory and thermodynamics, in particular Shannon entropy

and the Jensen-Shannon Divergence, provide important and novel insights into

HLA allele diversity and overlap as well as expand our ability to quantitatively

characterize and compare HLA alleles.
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1 Introduction

The increasing availability of immunopeptidomic datasets produces constant nov-

elty in our understanding of peptide repertoires binding to given Major Histocom-

patibility Complexes (MHCs). An outstanding open question is how to describe,

through a theoretical framework, the diversity within the same repertoire and

across repertoires, given also the huge HLA polymorphism. This poses the need

for approaches that extrapolate from available data, e.g. model-based approaches,

to give a quantitative characterization of repertoire size, complexity and overlap.

Attempts undertaken so far rely on counting peptides in databases to estimate

repertoire sizes [1, 2] and on the correlation between sequence motifs to quantify

overlap between repertoires [2]. Here we propose alternative tools based on in-

ferring probability distributions - and in particular probability distributions that

account for correlations between sequence positions.

Using epitope sequence data from the Immune Epitope Database and Analy-

sis Resource (IEDB) [3], a Restricted Boltzmann Machine (RBM) is used to learn

a probability distribution from peptides presented by a given HLA-1 allele. Ana-

lyzing the diagnostic ability of these models, we have previously shown that the

RBM is a more powerful classifier than other existing algorithms [4]. In addition

to outperforming other classifiers in its predictive ability, the model is also capable

of generating samples from the learned distribution.

For each HLA-1 allele, the RBM model learns a probability distribution for

the space of presented epitopes in the form of the Boltzmann distribution. Taking

inspiration from statistical mechanics and information theory, we currently seek

to investigate the properties and applications of corresponding thermodynamic

quantities. In particular, for any given HLA-1 allele, we can calculate a Shannon

entropy for the presentation space. From an information theoretic perspective,

the entropy describes the information we have about which states are likely to be

sampled. We then hypothesize that the entropy informs us about the diversity of

an allele’s epitope presentation space. By comparing our results to those obtained

from a naively generated probability distribution where only frequencies of single

amino acid residues are considered (the independent model), we can quantify the
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information stored by the couplings between residues as the difference between the

two entropies, called the multiinformation [5].

An individual’s HLA type has a medically important role in the determina-

tion of transplant compatibility. Because of the huge variety of HLA genotypes in

the human population, perfect donor-recipient matches for transplants are often

impossible to find [6]. Therefore, it is vital that we have an accurate theoretical

understanding of which alleles are most similar to one another. The form of the

RBM model as a probability distribution suggests a simple method for quantita-

tively comparing an arbitrary number of alleles or allele sets in the form of the

Jensen-Shannon divergence (JSD). Using this quantity, we investigate both the di-

versity of alleles within the same HLA type (HLA-A, HLA-B, and HLA-C) as well

as the pairwise similarities between alleles. Throughout this paper, our results are

obtained from RBM models trained on the 98 HLA-1 alleles for which the most

data is available in the IEDB database.

2 Restricted Boltzmann Machines

In order to characterize an HLA-1 allele’s epitope presentation space, we utilize a

Restricted Boltzmann Machine (RBM): an energy-based machine learning model

capable of learning a probability distribution from sample data. RBMs provide

an elegant and novel machine learning approach to predict peptide antigen pre-

sentability that is critically important to immune responses. In previous work, we

demonstrated an RBM algorithm capable of learning probability distributions of

amino acids [7] and applied this algorithm to the classification of HLA-1 alleles [4].

In both its predictive and generative power, this algorithm has proven superior to

other existing models.

A RBM is a two layer neural network with a visible and a hidden layer. In

our implementation, the visible layer takes a peptide of fixed length (9-mer for

HLA-1) and the hidden layer represents features of the training data learned by

the RBM. The model itself is a function that computes an energy for any possible
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9-mer peptide from the equation,

(1)E(v, h) = −
N∑
i=1

gi(vi) +
M∑
j=1

Uj(hj)−
N∑
i=1

M∑
j=1

hjWi,jvi

where N is the number of visible nodes, M is the number of hidden nodes, vi are

the visible nodes, hj are the hidden nodes, Wi,j are the weights, and gi(vi) and

Uj(hj) represent the biasing potentials of the visible and hidden units, respectively

[8]. A probability distribution is then constructed in the form of the Boltzmann

distribution,

p(v) =
M∑
j=1

e−E(v,hj)

Z
. (2)

where the hidden nodes have been summed over to describe the probability that

the machine samples a given input vector v and Z is the partition function defined

as the sum over all possible states. Training the RBM then amounts to maximizing

this probability (minimizing the energy) for the peptides in provided in the training

set. The details of the algorithm and training are described in [8].

3 Entropy

3.1 Definition

For each HLA-1 allele, the RBM model learns a probability distribution for the

space of presented epitopes in the form of the Boltzmann distribution. Taking

inspiration from statistical mechanics and information theory, we investigate the

properties and applications of corresponding thermodynamic quantities. The most

important of these quantities is the entropy which is defined as the expectation

value of the negative log-probability,

SRBM = −
∑
x∈Ω

P (x) lnP (x) (3)

for probability distribution P defined over the sample space Ω. From an informa-

tion theoretic perspective, the entropy describes the information we have about
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which states are likely to be sampled. For our application, this means that a MHC

molecule which presents all possible peptides equally well, will have the maximum

entropy (Smax = ln Ω). Conversely, one that can only present one peptide will

have zero entropy.

3.2 Independent Model

A convenient model for comparison is the independent model. For a given HLA-1

allele’s presentation space, we define the probability of a sequence in this model

as the product of the amino acid frequencies calculated from the data at each

individual residue. This is similar to the probability distribution learned by the

RBM except that it ignores all features corresponding to coupling between residues.

As a result, the independent entropy is always larger than the RBM entropy. Since

the residues are independent, the entropy of this model can be computed exactly

as,

Sind = −
9∑

i=1

20∑
j=1

Pi(xj) lnPi(xj) (4)

where Pi(xj) is the frequency of amino acid xj at residue i. The difference between

the independent entropy and the RBM entropy represents the information learned

from the couplings between residues and is called the multiinformation [5].

3.3 Individual Alleles

For each of the 98 HLA-1 alleles with trained RBM models, we calculated the

entropies for both the RBM models and the independent models. Our results

are shown in figure 1. The error bars for both entropies represent the standard

deviation in the negative log probability (or the standard deviation in the self-

information). While we suspect that correlations between allele entropy and gen-

eral CD8+ T-cell activity can be made, most studies to date correlate single alleles

with specific diseases providing little information about total immune activity for

comparison. For each allele, we also present the multiinformation in figure 2 illus-

trating an improvement of at least 0.5 nats over the independent model for most

alleles.
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Figure 1: RBM (dark) and independent model (light) entropy for each of the 98
HLA-1 alleles. Error bars represent the standard deviation in the self-information.
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Figure 2: Multiinformation for each of the 98 HLA-1 alleles. Error bars are
calculated from propagation of uncertainty.
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4 Jensen-Shannon Divergence

4.1 Definition

Since for each allele we have inferred a probability distribution, it is useful to

find some metric by which to compare these distributions. A common method for

comparing probability distributions is the Kullback-Leibler divergence defined as,

DKL(P ||Q) :=
∑
x∈Ω

P (x) ln
P (x)

Q(x)
(5)

for probability distributions P and Q defined over the same space Ω. In order

to symmetrize this quantity and ensure boundedness, we consider the Jensen-

Shannon Divergence (JSD),

JSD(P ||Q) :=
1

2
D(P ||(P + Q)

2
) +

1

2
D(Q||(P + Q)

2
) (6)

=
∑
x∈Ω

P (x) ln
2P (x)

P (x) + Q(x)
+
∑
x∈Ω

Q(x) ln
2Q(x)

P (x) + Q(x)
. (7)

This quantity can also be defined as the mutual information between a binary

indicator variable and the mixture distribution between P and Q. In this case, the

binary indicator variable returns either P or Q with equal probability, although

this may be made more general, where for instance, P and Q are returned with

different weights. This definition suggests the information theoretic interpretation

that the Jensen-Shannon Divergence is the average information that a sample gives

about the distribution from which it came. In fact, the square root of the JSD is a

metric, since it satisfies the triangle inequality, and is termed the Jensen-Shannon

Distance (JSDist). Therefore, the JSD functions as a squared distance between

probability distributions [9].

4.2 JSD in Epitope Presentation Spaces

Applied to the epitope presentation spaces of two HLA-1 alleles, the JSD provides

useful information about how much these spaces overlap. If the JSD is maximal

(JSDmax = ln 2), this implies that for every sequence presentable by one MHC
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complex, there is 0 likelihood of it being presentable by the other complex. If

the JSD is minimal (JSDmin = 0), we have that the two presentation spaces are

identical. A higher JSD indicates a greater likelihood of cross-priming events:

when epitopes are capable of being presented by both MHC complexes.

4.3 Interactions Learned by the RBM

The JSD can be generalized to compare any number of probability distributions

(P1, P2, ..., PN) defined over the same space:

JSD(P1, P2, ..., PN) :=
1

N

N∑
n=1

D(Pn||
∑N

n=1 Pn

N
) (8)

=
N∑

n=1

∑
x∈Ω

Pn(x) ln
NPn(x)∑N

n=1 Pn

. (9)

In figure 3 we computed this quantity for all combinations of alleles considering

10 different alleles of each of the three HLA-1 loci. Universally, we find that the

JSD between RBM models is greater that that between their independent model

counterparts. Since the independent model considers each amino acid residue in-

dependently, this difference represents the information contained by the couplings

between amino acid residues that are learnt by the RBM model. Comparing be-

tween the three HLA-1 types, we can see that on average, HLA-B alleles have the

greatest diversity amongst themselves followed by HLA-A and then HLA-C.
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Figure 3: Average generalized Jensen-Shannon Divergence as a function of num-
ber of alleles considered. For each x-value, the Jensen-Shannon Divergence of all
combinations of x alleles taken from the lists on the right are averaged over for the
both the RBM and independent models. Error bars represent 1 standard deviation
about the mean. JSD upper bound represents value at which all distributions are
disjoint.
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4.4 Pairwise Distance Between Alleles

To investigate the pairwise JSD landscape across all 98 HLA alleles, we computed

the JSD for all pairs of alleles. In figure 4, we present the data grouped by HLA

type. This clearly illustrates differences in diversity among alleles of the same

type: HLA-C is the least diverse HLA type forming a prominent tight cluster while

HLA-B is the most diverse with some alleles sharing very little in common with

others in the same group. This supports our conclusions from the previous section

investigating mutiallelic JSD. We also observe that in general, HLA-A and HLA-B

alleles individually share more in common with HLA-C alleles than they do with

each other. Individual group diversity suggests the previously proposed hypothesis

that HLA-B evolutionary precedes the other two groups and that HLA-C is the

youngest HLA-1 type [1]. However, the relative divergence between HLA-1 types

A and B suggests, on the contrary, that HLA-A and HLA-B are both evolutionary

derived from HLA-C. Additional methods used to pairwise compare individual

alleles, such as the Grantham distance that quantitatively compares amino acid

sequences by their physicochemical properties, produce similar qualitative results

[1].

HLA alleles are also sub-classified into supertypes. To investigate the validity

of these classifications and to test our own model, we also present a clustered JSD

heat map (figure 5) where alleles are color coded by their supertype classifications

as defined by [10, 11]. Our results demonstrate that, in general, alleles within the

same supertype tend to cluster together. These results also suggest supertype

placements for unclassified alleles, such as for HLA-A*34:01 and supertype A03.

Accurate classification of similar alleles is important especially when the diversity

of HLA alleles in the human population makes finding suitable transplant donors

difficult. In the absence of a perfect match, usually only achieved when the donor

is a relative, the donor and recipient’s respective HLA types should be as similar

as possible. In fact, a recent study demonstrated that HLA-B is one of the most

important alleles to consider when a mismatch is inevitable [6]. This aligns with

the result that HLA-B is the most diverse of the HLA-1 types.
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Figure 4: Jensen-Shannon divergence for all pairs of alleles grouped by HLA type
(HLA-A, HLA-B, and HLA-C). Clustering provides clues as to the evolutionary
origins of each HLA type.
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Figure 5: Jensen-Shannon divergence for all pairs of alleles. Heat map is clustered
to group alleles with smaller distances. Alleles are color coded by their classifica-
tion as defined by [10,11].
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5 Conclusion

Probability spaces for T-cell epitope presentation by MHC-1 molecules make an

excellent model for the theoretical investigation of HLA-1 alleles. We have demon-

strated that by using a Restricted Boltzmann Machine to learn these distributions

from large data sets, we can quantitatively characterize properties both of indi-

vidual alleles and similarities/differences between alleles and sets of alleles. The

diversity of a presentation space is characterized by the RBM model entropy which

may help inform the range of protection granted by an individual allele. We are

also able to quantify the information stored in the couplings between amino acid

residues using the multiinformation. In addition, the JSD provides us with a con-

venient method for comparing these probability distributions both pairwise and

as sets of alleles. These comparisons provide important information about the

diversity of alleles within sets (ex. HLA-A, supertypes, haplotypes) in addition

to defining a metric with which to compare individual alleles. Quantification of

pairwise comparisons in particular has important implications for characterizing

donor/recipient transplant compatibility.
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