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Abstract

In this work we provide a unifying framework from which to discuss the measures of compu-

tational complexity associated with different models of quantum computation, based on the

resources being considered when discussing equivalence between the models. Due to the dis-

parity between and the lack of a comprehensive theory comparing these various models in the

literature, we first present a reformulation of selected existing results under this framework.

We then utilize insights gained from this framework, particularly from the case of bang-bang

time-optimal control of the Schrödinger equation, to propose a new measure of complexity for a

generic parameterized quantum circuit (PQC). We conclude with a discussion of the potential

implications of this new measure, as well as an outline for future work to further explore the

connections presented here.
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1 Introduction

Quantum computing has been proposed as a new paradigm for achieving computational advan-

tages over classical computers [1]. In order to adequately discuss these proposals and potential

advantages, however, it is important to have a precise definition for a quantum “advantage.” To

do so, one needs to be able to assess the complexity of a particular quantum procedure, usually

attained by measuring the resources utilized by the procedure.

Unfortunately, theories of quantum complexity across different models are at the moment

far less established than those for classical complexity, and a unified model to discuss the many

models of quantum computation does not yet exist. In particular, the fundamental barrier

between discrete and continuous models has yet to be successfully broken (perhaps due to the

innate property of discretization in quantum mechanics, though this is a topic better suited

for more philosophical discussions as in the recent preprint of [2]), leading to many disparities

between measures of complexity in the different models. As such, many of the existing results

for quantum computation are difficult to compare with each other across the various fields and

models.

Thus, it is the goal of this work to provide steps towards a framework to unify many of

the existing models, and inspire future work to further explore ways to connect them. To do

so, we begin in section (2) by introducing measures of complexity associated with models of

quantum computation, and describing a selected subset of the major model classes relevant to

our discussion in terms of their resources, including quantum circuits with discrete, continuous,

or parameterized gate sets, as well as the controlled Schrödinger equation. Then, in section (3),

we reformulate many of the existing equivalence results between these model classes, noting the

distinction between bidirectional equivalence and unidirectional simulability. In particular, we

note the importance of specifying the meaning of “equivalence.”

Furthermore, as the prospects for quantum computing in the near future of the NISQ era

will likely be done using hybrid quantum-classical algorithms implemented on parameterized

quantum circuits (PQCs) [3], in section (4) we use insights gleaned from the reformulations

in our framework to propose a notion of complexity for quantum operations in the model of

PQCs, inspired in particular by bang-bang time-optimal control of the Schrödinger equation.

We conclude in section (5) with some remarks on the possible implications of this new measure,

as well as our hope that the aggregation and proposal presented within this framework could

allow for future studies to successfully apply results and techniques across the existing models.
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2 Models of Quantum Computation and Complexity

Quantum complexity is the natural extension of classical complexity theory to the quantum

regime, where instead of a classical circuit or Turing machine, we have access to a quantum

computer. For a full background on classical complexity theory, an introduction to quantum

computation, and their intersection, we refer the reader to [4], [5], and [6] respectively. On

this note, we also remark that the field of “quantum complexity theory” is and has been well

established (see [7] for a comprehensive overview), but operates in a slightly different setting

than those that we consider, since they tend to focus on a particular model (i.e. quantum

Turing machine or quantum circuit) and examine complexity classes and algorithms relative

to that choice of model. As such, one of the goals of this project is to unify various models

such that the powerful tools and results from quantum complexity theory could be applied and

interpreted within the context of the other models.

In general, a model of computation consists of a fixed setup and architecture, along with a

set of one or more scalable resources. Defining the complexity of a model or a given problem

involves measuring some function of the scalable resources. As such, problem definition is a key

component of analyzing complexity. Determining whether a problem is solvable given a set of

resource constraints is known as a decision problem (colloquially, a yes/no question), whereas

finding the solution itself is known as a search problem, and finally an optimization problem

involves minimizing a particular cost function subject to a set of constraints defined by the

resources. Each of these instances involve intricacies that will be discussed in the following

sections, particularly in the distinctions between classical and quantum resources, error scaling,

and the universality of a particular model.

2.1 Quantum Circuit with Discrete Gate Set

The simplest model of quantum computation, after the purely-abstract quantum Turing ma-

chine, is a quantum circuit built from a discrete gate set. In the following definition, we adopt

the traditional [5] “finite” restriction of a discrete set as opposed to allowing a countably infinite

number of gates. Furthermore, a unitary gate U acts non-trivially on j out of n qubits (without

loss of generality, assume it acts on the first j qubits) if j is the smallest value such that up to

permutations of the qubits, U can be decomposed as Uj ⊗ 12n−j , where 12n−j is the identity

operator on the remaining n− j qubits.
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Definition 2.1.1. A discrete quantum gate set is a finite set of unitary gates defined

by G = {Uj}1≤j≤m, where each Uj acts non-trivially on any combination of cj qubits.

A discrete quantum circuit on n qubits is a sequence Sn of gates chosen from some G, with

Sn =
∏D(Sn)
j=1 gj , with gj ∈ G. The scalable resources here are the gates in G, where one key

fact is that for a family of discrete quantum circuits {Sn} indexed by the number of qubits n,

G remains constant and does not grow with n. Traditionally, the measure of complexity is some

function of {gj}1≤j≤D with no concern for the order of applications, and usually the standard

measure is simply the number of gates D(Sn) in the sequence. Another standard measure of

complexity, denoted the depth depth(Sn) of the circuit, captures consecutive terms in Sn that act

on disjoint sets of qubits into a single layer, and counts the total number of layers. Since for an

n-qubit circuit at each layer at most n gates can be applied, we note that D(Sn) ≤ n ·depth(Sn).

Therefore, D(Sn) is polynomially equivalent (in fact, by at most a linear factor in the number

of qubits) to the depth of the circuit. One can also notice that even while fixing the depth of

a circuit, one could vary the number of gates D by varying the number of qubits n, thereby

presenting another important reason to distinguish between D(Sn) and depth(Sn).

A gate set G such that an arbitrary unitary operation can be constructed exactly is called

exactly universal. Due to the uncountable number of possible quantum gates, it is well known

that this is impossible for a discrete gate set G; therefore, the goal of a discrete quantum circuit

is to be able to approximate any unitary operation to arbitrary precision using a finite-length

sequence of gates from G. Such a gate set is called universal. In 2.2 below we briefly discuss the

relationship between such concepts of exact and approximate universality.

As a result, the level of error ε defined by the operator norm ‖Un−Sn‖op is also a measurable

resource of the circuit that can scale with the number of qubits n. Usually, for a fixed number

of qubits n, the measure of complexity is either defined to be the minimum D(Sn) as a function

of ε, or the minimum D(Sn) for a fixed value of ε. For a family of circuits {Sn}, the measure

of complexity is the minimum D(Sn) as a function of both n and ε. In many cases, we want to

guarantee that ε be at most constant in n, or even vanishing relative to n (denoted on(1)).

Precisely, the complexity C[{Un}] when one wants arbitrary-precision approximation is a

function of n for a family of unitary gates {Un}:

C[{Un}] := sup
ε>0

(
inf

Sn s.t. ‖Un−Sn‖op≤ε

(
D(Sn)

))
(1)

Here, the inner infimum returns a function of n, and so afterwards we take the outer supremum
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over functions (usually defined by the standard hierarchy of highest-order terms). On the other

hand, for a particular (possibly functional) value of ε as εn, we can write:

C[{Un}, {εn}] := inf
Sn s.t. ‖Un−Sn‖op≤εn

(
D(Sn)

)
(2)

2.2 Quantum Circuit with Continuous Gate Set

A quantum circuit built instead from an uncountable and/or continuous gate set is a general-

ization of the discrete gate set:

Definition 2.2.1. A continuous quantum gate set is a finite set of families of unitary

gates defined by G = {Fj}1≤j≤m, where each Fj is a (possibly uncountable) family of

gates that act non-trivially on any combination of cj qubits.

Some common choices for Fj are Sk (the set of all unitary gates acting non-trivially on

k qubits, as distinguished from Sk, a particular circuit on k qubits), or arbitrary rotations

{e−iαH}α∈R along a particular axis defined by a self-adjoint operator H. Unlike discrete quan-

tum gate sets, continuous quantum gate sets can be exactly universal. As a result, the level of

error εn upper bounding ‖Un −Sn‖op is sometimes fixed to be 0 instead of some positive value.

Furthermore, in many cases each family of gates Fj ∈ G has a different measure of complexity,

as for example in the case of the exactly universal gate set G = S1∪{CNOT} proven by Barenco

et al. [8], where the measure of complexity is simply the number of CNOTs applied in the

sequence (and where CNOT is a particular 2-qubit gate [5]).

Thus, as opposed to discrete quantum circuits, continuous quantum circuits yield many

choices in complexity measures, for example by choosing between zero and constantly-bounded

error, and in the weighting of gates from each family Fj . At this juncture, we note that although

it has been shown [9, 10] that a particular gate set G is exactly universal if and only if it is also

approximately universal (in the sense that it can approximate any unitary up to arbitrary preci-

sion), this does not necessarily mean that the complexities associated with them are equivalent.

Indeed, the number of gates from G required to exactly implement some Un is strictly higher

than the number of gates required to implement Un up to some precision εn - in fact, it is yet

unclear whether the two measures are even polynomially equivalent with respect to either n or

εn. As such, it is important to explore these intricacies when discussions move beyond simple

universality and into measuring the implementations.
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2.2.1 Parameterized Quantum Circuit

A particular instance of a quantum circuit with a continuous gate set is known as a parameterized

quantum circuit (PQC). Here, each family of unitary gates in the gate set is defined by a

particular Hamiltonian and either zero or one parameters. Formally:

Definition 2.2.2. A parameterized quantum gate set is a finite set of families of uni-

tary gates defined by G = {e−iαjHj,1 , e−iHj,2}1≤j≤m, where αj ∈ R are continuous

parameters, and each Hj,1 (Hj,2) are Hermitian operators acting non-trivially on any

combination of cj,1 (cj,2) qubits.

Here, the unitary corresponding to Hj,1 is parameterized by a real parameter αj , whereas

the unitaray corresponding to Hj,2 is fixed. In practice, the set G is in fact ordered, and for

a fixed number of qubits n the locations cj,1, cj,2 of the operators Hj,1, Hj,2 are fixed as well.

This defines an ansatz for a particular parameterized quantum circuit, in the sense that the

architecture is predetermined with depth 2m and parameter count m (see [11] for a review of

PQCs in the context of variational quantum algorithms). Therefore, the “traditional” resource

in a parameterized quantum circuit is the number of classical parameters m, similarly to the

standard choice for discrete and continuous quantum circuits. There are also other measures

such as “effective dimension” [12] and other neural-network based measures of complexity or

expressivity [13].

Similarly as to how a continuous quantum circuit is a strict generalization of the discrete

quantum circuit, a parameterized quantum circuit can easily be seen as a particularization of

a continuous quantum circuit. In this sense, there are constraints on both the sets of allow-

able/parameterized gates, as well as on the architecture of the circuit, which we briefly discuss

in section (4) especially in the connection to bang-bang time-optimal quantum control.

2.3 Controlled Schrödinger Equation

On the other hand, the model of computation usually referred to as “quantum control” is

fundamentally different from the aforementioned families of quantum circuits, as it operates in

continuous rather than discrete time. In fact, perhaps a better moniker for this model is the

“controlled Schrödinger equation.” This is based on the fact that the time evolution of a closed
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quantum system is governed by the (normalized) time-dependent Schrödinger equation

dU(t)

dt
= −iH(t)U(t), U(0) = 1 (3)

U(T ) = T
[

exp{−i
∫ T

0

H(t) dt}
]

(4)

where T denotes time-ordering. As such, altering H(t) for 0 ≤ t ≤ T allows for the construction

of a unitary gate U(T ). In this sense, one is “controlling” the Hamiltonian that governs the

evolution of the system.

This model is very broad, allowing for many types of constraints on H(t). One common

constraint is to expand H(t) in some basis (such as the generalized Pauli basis) and bound

and/or penalize the individual coefficients in the basis expansion (such as only allowing for H(t)

to consist of up to k-body operators for some fixed k). Another common formulation in quantum

control is to decompose H(t) into a drift Hamiltonian and a set of control Hamiltonians, defining

a bilinear control system:

H(t) = H0 +

m∑
k=1

fk(t)Hk (5)

where each H0≤k≤m are fixed and fk(t) ∈ R. In this work, we will refer to “quantum control”

as defining the class of controlled Schrödinger equations of this form. Some common constraints

are to bound |fk(t)| ≤ c for some constant c, or to restrict the control function {fk(t)} ∈ C1(R)

to be continuous, or differentiable/smooth/bang-bang/square-integrable/etc.

Under any set of constraints, many natural measures of complexity arise. The simplest

measure is the time T itself, denoted the minimum time (although the formal term would be

an infimizing time, as we can see in the definition):

T ∗ = inf
U(T )=U

T (6)

where the infimum is taken over all U(t) with its generator H(t) satisfying the given constraints.

As in the case of continuous quantum circuits, the model of the controlled Schrödinger equation

allows for exact universality/controllability, and as such the level of error can be either set to

zero or bounded by a constant, and other proposed measures will be discussed in the ensuing

sections. While in this work we focus on a particular selection of results, the field of quantum

control extends far beyond what we discuss. For some recent overviews we refer to [14, 15, 16].
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3 Notions of Equivalence

Before we discuss notions of equivalence between these various models, we first make a brief

note on the difference between and separation of “classical” and “quantum” resources in any

quantum model of computation. Even though any classical computation can be simulated by a

quantum computer, we normally separate the two components.

In particular, the classical difficulty of “finding” the optimal implementation of an opera-

tion under any particular model (for example, finding the optimal gate sequence or the right

controls/parameters for an evolution) is usually separate from the aforementioned measures of

quantum complexity of implementing that operation, such as the number of gates/parameters

or the total time. In this work we focus mainly on the second part, although in discussing the

proposals for parameterized quantum circuits in section (4) we will refer to connections to the

classical complexity.

As such, having defined the relevant quantum models of computation, we now reformu-

late many of the existing equivalence results, both between and within each class. In order

to talk about equivalence, one needs to fix two models of computation and then equate the

two varying/scaling resources (such as the number of gates from a universal gate set com-

pared to the total time in a time-optimal evolution under a controlled Schrödinger equation).

When one class is thought to be more powerful than another, “equivalence” necessarily entails

constraining one class, boosting the other class, or constructing particular metrics. Hearken-

ing back to section (2.2), we note the important difference between “equivalence” in reach-

ability/implementability/universality, and “equivalence” in terms of a particular measure of

resources.

Because there are in fact many “quantum” resources at play, resource theories have been

suggested to equate many of them, such as entanglement (see for examaple [17]). However, these

existing theories are not the same as what we are attempting to do, since they don’t consider a

broader class of models and instead focus on the resources present within a single model.

Similarly, the famous Solovay-Kitaev theorem [18] was one of the first presentations of model

equivalence for quantum circuits with discrete gate sets, which informally states that all universal

discrete gate sets are polynomially equivalent up to polylogarithmic error. Formally, one can

write, where a gate set G contains its own inverses if for all g ∈ G, we also have g−1 ∈ G:

Theorem 3.1. (Solovay-Kitaev 1997 [18], refined in [6, 19]) An n-qubit quantum circuit con-

structed by a sequence of m quantum gates from a discrete gate set G1 that contains its own
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inverses can be approximated to error ε in operator norm by a quantum circuit of O
(
m log4(mε )

)
gates from any discrete gate set G2 that also contains its own inverses. Setting ε = O( 1

n ) yields

a simulation length of O
(
m log4(mn)

)
.

In this sense, any discrete gate set that contains its own inverses can polynomially simulate

any other such discrete gate set, and more importantly, the simulation is done in such a way that

is only polylogarithmic in the quantity 1
ε associated with the error. However, an important caveat

is that this initial sequence of m gates from G1 may itself be exponential in n - as such, while

this result states that a discrete gate set G2 could polynomially simulate G1, it remains difficult

to characterize and/or find the initial sequence using G1. Furthermore, as we will see, extending

even the polynomial equivalence result to continuous gate sets and further into continuous-time

models is significantly more challenging. In the following sections we reformulate a few key

attempts at doing so.

3.1 Nielsen

3.1.1 Circuit Depth is Lower Bounded by a “Geodesic Distance”

We reformulate the relevant parts of the result presented in the article “A geometric approach

to quantum circuit lower bounds,” published in 2005 by Nielsen [20].

Consider a family of unitaries {Un} that we want to implement to error ε that is constant

and independent of n. Let G = S1 ∪ S2 be a continuous quantum gate set defined by all one-

and two-qubit unitaries. We define the complexity of a particular sequence Sn with elements in

G to simply be |Sn|, or the total number of one- and two-qubit gates. Thus, CG [Un] is defined

to be the infimum of |Sn| over all sequences Sn with ‖Un − Sn‖op ≤ ε.

Effectively, we show that a lower bound for CG [Un] is given by the length of the minimal

geodesic between Un and the identity 1n, where length is defined by a suitable Finsler metric on

the manifold SU(2n). To do so, define an instantaneous cost function F (H(t)) that measures

the cost of applying a particular Hamiltonian H(t), with the condition that F is derived from a

right-invariant local metric on SU(2n) (although we treat it as a norm on su(2n) - for further

information on the precise properties of F , see section IIB in [20]). For a particular H(t) that

generates U(t) with U(T ) = Un, define the following complexity CFM (for Finsler metric) as
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measured across the entire evolution 0 ≤ t ≤ T (denoted U(t ≤ T )):

CFM [U(t ≤ T )] :=

∫ T

0

F (H(t)) dt (7)

CFM [Un] := inf
T>0 s.t. U(T )=Un

CFM [U(t ≤ T )] (8)

Now, we show the following theorem (with the n-subscript dropped for clarity):

Theorem 3.2. If a Finsler metric F satisfies F (H(t)) ≤ 1 for H(t) corresponding to the

generator for any one- or two-qubit unitary, then we have that CFM [U ] ≤ CG [U ]. As such,

the minimum number of gates required to synthesize U is lower bounded by the metric given by

CFM [U ].

Proof. (we use the notation in [20]) Suppose that U1 = e−iH1 , . . . , UCG [U ] = e−iHCG [U] defines a

minimal sequence S to implement U from the gate set G of one- and two-qubit gates. We define

the following curve H(t) as in equation 13 (Theorem 1, page 9) of [20]:

1

CG [U ]
H(t) =



H1, for 0 ≤ t ≤ 1
CG [U ]

H2, for 1
CG [U ] ≤ t ≤

2
CG [U ]

. . . . . .

HCG [U ], for 1− 1
CG [U ] ≤ t ≤ 1


Since this H(t) is not smooth, so to make it smooth we can regularize it using a function r(t)

such that r(t)H(t) also generates U(t). Choose an r(t) such that r(t) ≥ 0, r(t) = 0 for t = k
CG [U ]

for all relevant integers k, and that for any such integer k we also have:

∫ k+1
CG [U]

k
CG [U]

r(t) dt =
1

CG [U ]
(9)

Such r(t) is easily constructed, as we can notice for example the function r(t) = 2 sin2(tπ ·CG [U ])
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works. Now, since r(t)H(t) also generates U(t) for 0 ≤ t ≤ 1, we obtain:

CFM [U ] ≤ CFM [U(t ≤ 1)] (10)

=

∫ 1

0

F (r(t)H(t)) dt (11)

=

∫ 1

0

r(t) · F (H(t)) dt (12)

=

∫ 1

0

r(t) · F (CG [U ] · 1

CG [U ]
H(t)) dt (13)

=

∫ 1

0

r(t) · CG [U ] · F (
1

CG [U ]
H(t)) dt (14)

Since each term in 1
CG [U ]H(t) is the generator for a one- or two- qubit unitary by construction,

we know from the inequality given by F that F ( 1
CG [U ]H(t)) ≤ 1; this yields:

CFM [U ] ≤
∫ 1

0

r(t) · CG [U ] dt (15)

= CG [U ] ·
∫ 1

0

r(t) dt (16)

= CG [U ]

CG [U ]−1∑
k=0

(∫ k+1
CG [U]

k
CG [U]

r(t) dt
)

(17)

= CG [U ]

CG [U ]−1∑
k=0

1

CG [U ]
(18)

=

CG [U ]−1∑
k=0

1 (19)

= CG [U ] (20)

Therefore, CFM [U ] ≤ CG [U ], as desired.

While this is an interesting proof, we notice the following insight when attempting to connect

the result to the quantum control model:

Remark 3.1. In order to apply Theorem (3.2) to the quantum control model, one effectively

requires that the control field amplitudes be bounded. Furthermore, since the bound is constructed

by simulating each gate in the sequence, it does not provide any insight when considered as an

upper bound on the minimum time (both with and without drift).
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3.1.2 Circuit Depth is Polynomial in a “Geodesic Distance”

We reformulate the result presented in the article “Quantum Computation as Geometry,” pub-

lished in 2006 by Nielsen et al. in Science [21], which is similar in setting to the previous

equivalence result published in 2005 [20] by Nielsen, described above.

As before, consider a family of unitaries {Un} that we want to implement to error ε that is

constant and independent of n. Let G = S1 ∪ S2 be a continuous quantum gate set defined by

all one- and two-qubit unitaries. Again, we define the complexity of a particular sequence Sn

with elements in G to simply be |Sn|, or the total number of one- and two-qubit gates. Thus,

CG [Un] is defined to be the infimum of |Sn| over all sequences {Sn} with ‖Un − Sn‖op ≤ ε.

On the other hand, implementing Un through a controlled Schrödinger equation yields a

Hamiltonian H(t) such that U(T ) = Un for some T . Then, one can expand H(t) in the Pauli

basis as follows (with Pn being the set of Pauli operators acting nontrivially on n qubits):

H(t) =
∑

Hj∈P1∪P2

fj(t)Hj +
∑

Hk∈P3∪···∪Pn

gk(t)Hk (21)

where the terms are split according to those corresponding to one- or two-qubit operators, and

those corresponding to many-body operators. This yields the following instantaneous cost of

applying a particular Hamiltonian H(t):

F (H(t)) =

√√√√[ ∑
Hj∈P1∪P2

f2
j (t)

]
+ p2

[ ∑
Hk∈P3∪···∪Pn

g2
k

]
(22)

where p is a penalty paid for applying many-body terms, which is later chosen to be large in

order to suppress those terms when wanting to minimize F (H(t)). One can notice that F is

effectively a weighted 2-norm on the coefficients of H(t). Thus, one can define the complexity

CFM :

CFM [U(t ≤ T )] :=

∫ T

0

F (H(t)) dt (23)

CFM [Un] := inf
T>0 s.t. U(T )=Un

CFM [U(t ≤ T )] (24)

In Nielsen’s article, H(t) is rescaled such that F (H(t)) = 1 for all t and as such CFM [U(t ≤

T )] = T ; this is done not only to intuitively tie in the time T to the measure of complexity, but

mainly to connect it to the particular choice of F in the previous equivalence result above. This
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will also be discussed later, but a noticeably caveat to point out is that this direction does not

work if there is a nonzero drift component, since H(t) cannot be arbitrarily rescaled.

The first step in the proof is to project the Hamiltonian H(t) onto one that only contains one-

and two-body terms, and justify doing so by choosing the penalty term p appropriately. Here,

we define Hπ(t) to simply be the component of H(t) corresponding to the one- and two-body

terms:

Hπ(t) =
∑

Hj∈P1∪P2

fj(t)Hj (25)

Then, defining Uπ(t) to be the unitary generated by Hπ(t), we can now show that:

Lemma 3.3.

‖Un − Uπ(T )‖op ≤
2n · CFM [Un]

p
(26)

Proof. Choose U(t ≤ T ) such that U(T ) = Un and such that CFM [U(t ≤ T )] = CFM [Un]. We

have:

CFM [Un] = CFM [U(t ≤ T )]

=

∫ T

0

F (H(t)) dt

=

∫ T

0

√√√√[ ∑
Hj∈P1∪P2

f2
j (t)

]
+ p2

[ ∑
Hk∈P3∪···∪Pn

g2
k

]
dt

≥
∫ T

0

√√√√p2

[ ∑
Hk∈P3∪···∪Pn

g2
k

]
dt

= p ·
∫ T

0

√ ∑
Hk∈P3∪···∪Pn

g2
k dt

= p ·
∫ T

0

‖H(t)−Hπ(t)‖2 dt

By Cauchy-Schwarz, we know that ‖H‖op ≤ 2n‖H‖2 for any H, and for any unitarily invariant

12



norm ‖·‖ we know that ‖U1(T )− U2(T )‖ ≤
∫ T

0
‖H1(t)−H2(t)‖ dt. Thus:

CFM [Un] ≥ p ·
∫ T

0

‖H(t)−Hπ(t)‖2 dt

≥ p

2n
·
∫ T

0

‖H(t)−Hπ(t)‖op dt

≥ p

2n
· ‖U(T )− Uπ(T )‖

=
p

2n
· ‖Un − Uπ(T )‖

Rearranging immediately yields the Lemma, as desired.

Thus, choosing p = 4n yields ‖Un−Uπ(T )‖op ≤ CFM [Un]
2n . Now, we discretize Hπ(t) into small

intervals of length ∆, where each interval can be simulated by a constant mean Hamiltonian

denoted Hπ,∆. This yields the second Lemma in the proof:

Lemma 3.4. Let H(t ≤ ∆) generate a unitary U , such that ‖H(t)‖op ≤ c for all 0 ≤ t ≤ ∆.

Then, we have:

H =
1

∆

∫ ∆

0

H(t) dt (27)

‖U − e−i∆H‖op ≤ 2(ec∆ − 1− c∆) = O(c2∆2) (28)

Proof. We can recall the Dyson series for U = U(∆) as follows:

U(∆) =

∞∑
m=0

(−i)m
∫ ∆

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm H(t1)H(t2) · · ·H(tm) (29)

13



We can then write (where each norm is implicitly the operator norm):

‖U − e−i∆H‖ = ‖
∞∑
m=0

(−i)m
∫ ∆

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm H(t1)H(t2) · · ·H(tm) (30)

−
∞∑
m=0

(−i∆H)m

m!
‖ (31)

= ‖1− 1+ (−i)
∫ ∆

0

H(t1) dt1 − (−i∆H) (32)

+

∞∑
m=2

[
(−i)m

∫ ∆

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm H(t1)H(t2) · · ·H(tm) (33)

− (−i∆H)m

m!

]
‖ (34)

= ‖
∞∑
m=2

[
(−i)m

∫ ∆

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm H(t1)H(t2) · · ·H(tm) (35)

− (−i∆H)m

m!

]
‖ (36)

≤
∞∑
m=2

[∫ ∆

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm ‖H(t1)H(t2) · · ·H(tm)‖ (37)

+
‖(−i∆H)m‖

m!

]
(38)

≤
∞∑
m=2

[
cm · ∆m

m!
+

∆mcm

m!

]
(39)

= 2

∞∑
m=2

cm∆m

m!
= 2(ec∆ − 1− c∆) (40)

This completes the proof, since we now have ‖U − e−i∆H‖ ≤ c2∆2 +O(c3∆3) = O(c2∆2).

Now, from page 56 of “Matrix Computations” by Golub and Van Loan (1996; [22]), we know

that:

‖Hπ(t)‖op ≤
√
rank(Hπ(t)) · ‖Hπ(t)‖F (41)

≤
√

16n2 · F (Hπ(t)) (42)

= 4n · F (Hπ(t)) (43)

where the rank is ≤ 16n2 since Hπ(t) contains at most one- and two-body terms, of which there

are at most 16n2. For the purposes of our setting, we know that ‖Hπ(t)‖op ≤ 4n · F (Hπ(t)),

and since we rescale such that F (Hπ(t)) ≤ F (H(t)) = 1 (again, not valid in the case of nonzero

drift), we obtain that ‖Hπ(t)‖op ≤ 4n, so applying Lemma 3.3 to the unitary U generated by
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Hπ(t ≤ ∆) yields ‖U − e−i∆H‖ = O(n2∆2).

Remark 3.2. It is also important to note that this inequality is precisely the issue in the case

with non-zero drift, as F (Hπ(t)) cannot be bounded by rescaling Hπ(t). This section shows that

Nielsen’s result cannot hold for cases with unbounded control, and in the case of bounded control

is valid when the norm of H0 can be bounded by a polynomial in n.

Many minimum-time results from the quantum control model derived using Nielsen’s in-

equality involve such bounds on ‖H0‖op, which could lead to some interesting explorations.

From this, we can show the third and final Lemma in the proof:

Lemma 3.5. An n-qubit constant Hamiltonian Hπ,∆, which only contains one- and two-body

terms, can be simulated using a sequence of O(n
2

∆ ) one- and two-qubit gates.

Proof. Divide the interval [0,∆] into N = 1
∆ steps of size ∆2, and define

U∆2,k =
∏

Hj∈P1∪P2

e−iαj,kHj

Here, each term e−iαj,kHj is a one- or two-qubit gate in the continuous gate set G, and it is

standard to show that since |P1 ∪ P2| = O(n2):

‖e−iHπ,∆∆2

− U∆2,k‖op = O(n4∆4)

Then, using repeated triangle inequality and unitary invariance, we obtain:

‖e−iHπ,∆∆ −
N∏
k=1

U∆2,k‖op = ‖
N∏
k=1

e−iHπ,∆
∆
N −

N∏
k=1

U∆2,k‖op

= ‖
N∏
k=1

e−iHπ,∆∆2

−
N∏
k=1

U∆2,k‖op

≤
N∑
k=1

‖e−iHπ,∆∆2

− U∆2,k‖op

≤ N · O(n4∆4)

= O(n4 ·∆3)

The number of gates used here is O(N · n2) = O(n
2

∆ ).

Putting these together yields the following theorem:
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Theorem 3.6. Let G be the gate set consisting of all one- and two- qubit gates, Un be an n-qubit

unitary, and CG ,CFM be the complexities defined above. Then:

CG [Un] = O(n6 · CFM [Un]3) (44)

In other words, the minimum number of gates from G required to implement Un is polynomial

in both the number of qubits n and the constructed complexity CFM . (Note: the main body

of Nielsen et al. 2006 [21] (page 1135) contains the full proof, although the notation here is

rewritten for our context.)

This shows that the natural measure of complexity in the continuous quantum circuit defined

by one- and two-qubit gates is polynomial in a geodesic distance defined in the controlled

Schrödinger equation. Unfortunately, it is nontrivial to extend this to the case where there

is drift.

Now, we briefly consider the special case where H(t) only has one- and two-body terms.

Here, the parameter p used in the construction of Hπ(t) from H(t) is not necessary, since the

original Hamiltonian H(t) already satisfies the properties of only containing one- and two-body

terms; in fact, the proof of Theorem 3.4 would be equivalent even when only considering this

special case for H(t), as the bottleneck in the gate count does not depend strongly on the

H(t)→ Hπ(t) relaxation. This yields the following:

Corollary 3.6.1. Let an n-qubit Hamiltonian H(t) generate a unitary Un at time t = T such

that the quantity
∫ T

0
‖H(t)‖2 dt is minimal over all such Hamiltonians H(t) generating Un that

consist only of one- and two-qubit terms for all times 0 ≤ t ≤ T . Then, the minimum number

of one- and two- qubit gates required to synthesize Un, denoted CG [Un], scales as

CG [Un] = O

(
n6 ·

(∫ T

0

‖H(t)‖2 dt
)3
)

(45)

One example of such H(t) could involve a non-zero drift H0 that only contains one- and

two-body terms, and control Hamiltonians that similarly only contain one- and two-body terms.

One standard setting is an Ising Hamiltonian H0 with full local control. Here, we see that

F (H(t)) scales at most quadratically in n provided the control fields are bounded, in which case

Nielsen’s result can hold. The case of unbounded control fields requires further exploration.

Furthermore:
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Remark 3.3. A bang-bang sequence involving a 2-local drift Hamiltonian H0 and full local

controls could also utilize Nielsen’s result. Given a minimum-time bang-bang sequence, each

single-qubit gate is already included as an entry in the gate set, so the only relevant portions

are of the form e−iH0t for some value of t. Since ‖tH0‖ = t‖H0‖, provided the minimum-time

is polynomial in n, Nielsen’s result immediately holds even without the requirement of bounded

control fields.

This observation is therefore one reason to justify our focus on looking at the conditions

where a bang-bang protocol can be optimal.

3.1.3 Comments on Nielsen’s Results

The first natural question to ask is whether or not CFM [Un] from section (3.1.1) or CFM [Un]

from section (3.1.2) can be connected to the physical time T . In the case without drift, this

question is trivial since the physical time T itself does not matter (due to arbitrary rescaling),

and Nielsen does this already by setting F (H(t)) = 1 so that CFM [U(t ≤ T )] = T in the

“upper bound” case. For the case with drift, however, the lack of arbitrary rescaling makes the

time T not be the quantity that minimizes CFM [U(t ≤ T )]. Furthermore, the “lower bound”

effectively gives an upper bound on the minimum time, but only for a particular control system

- in effect, the bound arises by simulating each gate in sequence, which is a trivial construction

and therefore not particularly useful.

Another important viewpoint is that both of Nielsen’s articles [20] and [21] aim to provide

upper and lower bounds on the minimal circuit depth/complexity, not from the perspective of

quantum control or minimum times. In this sense, since as mentioned above the lower bound

on circuit complexity is effectively irrelevant to minimum-time considerations, only the upper

bound is potentially useful. However, as also mentioned above, the cases with drift and/or

unbounded controls unfortunately do not fit the main criteria of the results (arbitrary rescaling

and bounded norm). It is therefore the opinion of this work that “polynomial equivalence”

between minimum time and minimum circuit depth has yet to be proven for the case with

non-zero drift. We can further make the following remark:

Remark 3.4. We can re-organize the relations provided by Nielsen in the two papers [20, 21]

as the following “hierarchy” of inequalities:

1.
Given a Finsler metric F , the geodesic distance CFM [Un] from the identity 1 to an

n-qubit goal unitary Un constructed with respect to F
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≤

2.

The value of CFM [U(t ≤ T )] for a particular unitary U(t ≤ T ) satisfying U(T ) = Un,

where U(t ≤ T ) is constructed by simulating each gate in a minimal-length gate sequence

of one- and two- qubit gates from G that creates Un

≤ [20]

3.
The length of the minimum gate sequence consisting of one- and two-qubit gates required

to synthesize Un

≤

4.
The length of a particular gate sequence of one- and two- qubit gates that synthesizes Un

by approximating geodesic time-evolution U(t ≤ T )

≤ [21]

5. O
(
n6 · C3

FM [Un]
)

, where CFM [Un] is the geodesic distance from (1)

One can observe that indeed, the value that would be associated with a minimum time T , namely

the geodesic distance CFM [Un], only appears on the outer ends of the inequalities, thereby not

allowing for any particularly helpful results from a practical standpoint.

3.2 Sussmann, Khaneja, etc.: The Case for Bang-Bang Control

Here we highlight results from the controlled Schrödinger equation model that relate in particular

to the case of bang-bang time-optimal control.

3.2.1 Jurdjevic/Sussmann 1972

We reformulate key results presented in the article “Control Systems on Lie Groups,” published

in 1972 by Jurdjevic and Sussmann [9]. On a similar note, we mention that a related paper

from later in 1972 by Sussmann, entitled “The Bang-Bang Problem for Certain Control Systems

in GL(n,R)” [23] uses a different definition of “bang-bang” from our setting, which we do not

focus on here.

The setting for the controlled Schrödinger equation is as defined above, with the bilinear con-

trol system H(t) = H0 +
∑m
k=1 fk(t)Hk. Let the subalgebra L be generated by −iX0, . . . ,−iXm,

with the subalgebra L generated by the controls −iX1, . . . ,−iXm, and corresponding connected

Lie subgroups S, S respectively. Let the reachable set RU be the set reachable from U in finite
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time, and for particular T the reachable set is RU (T ). Let Fu be the class of all locally bounded

and measurable functions defined on the interval [0,∞) and having values in Rm, and Fb be

the class of piecewise-constant functions defined on [0,∞) with components taking values in

{−1, 1}. Then, we have:

Theorem 3.7. (Theorem 5.1 in [9]) For a driftless bilinear control system with H0 = 0 and

locally bounded and measurable control functions, the set R1 reachable from the identity is the full

connected Lie subgroup S. In fact, R1(ε) = S for all ε > 0, so S can be reached instantaneously.

Proof. The first statement follows from the standard fact that if R1 is a subgroup then R1 = S;

to show that R1 is a subgroup, showing that inverses are contained in R1 follows from right-

invariance. For the second statement, we use the standard trick of arbitrary rescaling that for

any control function f(t ≤ T1) that yields U at time T1, the function g(t) = T1

T2
f(tT1

T2
) also yields

U at time T2; since we can take T2 → 0, we have that R1(T1) = R1(T2) for all T1, T2 > 0. This

completes the proof.

Notice that this means the time-optimal control sequence consists of arbitrarily strong delta-

like-pulses applied for arbitrarily short times, if there is no drift. This is in contrast with

Nielsen’s setting from 3.1.1 and 3.1.2, where the arbitrary rescaling of the Hamiltonian imposes

the equivalence between the metric and the time T , whereas in this case we set the time T → 0.

Sussmann also shows the following important fact (see for example [24] for a detailed proof):

Lemma 3.8. Any U ∈ S can be written as a finite product of elements of the form exp{−itHk},

where 0 ≤ k ≤ m.

We will comment on the potential significance of this result later.

3.2.2 Khaneja, Brockett, Glaser 2000

We now reformulate key results presented in the article “Time Optimal Control in Spin Systems,”

published in 2000 by Khaneja, Brockett, and Glaser [25]. The key result is the introduction of the

adjoint control system, and the intuition that the minimum time is equivalent to the minimum

coset time (where we refer to the infimizing time as the minimum time to match the conventions

of the literature). All control functions here lie in Fu, the space of locally bounded measurable

functions defined on [0,∞) as in the setting of Jurdjevic/Sussmann.

Here, we consider a similar scenario as above, with G = SU(2n) and its associated Lie

algebra g = su(2n). For U ∈ G and some element W ∈ su(2n), we define the adjoint action
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AdU (W ) = U†WU , and for a set K we have AdK(W ) =
⋃
k∈K Adk(W ). For K a compact

closed subgroup of G, we can write g = m + k.

First, it is well known that if G/K is a Riemannian symmetric space and h is a Cartan

subalgebra of the pair (g, k) with A = exp{h} ⊂ G, then we can decompose G = KAK. This

is known as the KAK-decomposition, and in some cases (such as single-qubit systems) yields a

trivial bang-bang optimal sequence of a bang followed by a drift evolution, followed by a bang.

From the setting of Jurdjevic/Sussmann in [9], we can further define the infimizing (instead of

minimum since we take the closure of the reachable set) time t∗(UF ) = inf{t ≥ 0 | UF ∈ R1(t)},

and t∗(KUF ) = inf{t ≥ 0 | kUF ∈ R1(t), k ∈ K}. Similarly to Theorem (3.7), we can show

that if K = S, the Lie subgroup corresponding to the subalgebra generated by the controls,

then t∗(UF ) = 0 for all UF ∈ K. The methodology used is equivalent to that as in [9], which in

particular uses the following Lemma:

Lemma 3.9. (Lemma 3 in [25]) Let U ∈ G and X : R → g be a locally bounded measurable

function of time. If Xn(t) converges to X(t) in the sense that limn→∞
∫ T

0
‖X(t)−Xn(t)‖ dt = 0,

then the solution to the differential equation U̇ = Xn(t)U at time T converges to the solution of

U̇ = X(t)U at time T . Note that this follows as a direct consequence of the uniform convergence

of the Peano-Baker series.

This can be used to show the analogous result as in Jurdjevic/Sussmann:

Lemma 3.10. (Lemma 4 in [25]) For any reachable unitary UF ∈ G, we have t∗(UF ) =

t∗(KUF ). As such, the infimizing time to reach a particular unitary is the same as the infimizing

time to reach any element in the right coset of K associated with that unitary.

Proof. Same as in Jurdjevic/Sussmann, except with the added justification of convergence using

the previous Lemma (3.9).

From this, we can define an adjoint control system: let P ∈ G, and define the control system

Ṗ = XP , where the control X is restricted to an adjoint orbit AdK(H0) = {k−1H0k | k ∈ K}.

Then, we can define the minimum coset time L∗(KUF ) = inf{t ≥ 0 | P (t) ∈ KUF }, which is

the infimizing time required to steer the adjoint control system from the identity to the coset

KUF . This allows for the main theorem, whose full proof can be found in [25]:

Theorem 3.11. (adapted from Theorem 7 in [25]) For any reachable unitary UF ∈ G, we have

t∗(UF ) = L∗(KUF ). As such, the infimizing time to reach a particular unitary in a bilinear
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control system is the same as the infimizing time to reach the right coset of K associated with

that unitary in the adjoint control system.

From the well-known result stated above, if G/K is a Riemannian symmetric space, and is in

particular of rank one, then we can decompose G = KAK where A = exp{−iαH0}; this means

that t∗(UF ) is the smallest value α > 0 such that UF = k1e
−iαH0k2, with k1, k2 ∈ K.

If instead G/K is still a Riemannian symmetric space but with rank greater than one, the

time-optimal tori theorem states that t∗(UF ) is the smallest value α > 0 such that UF =

k1e
−iαY k2, with k1, k2 ∈ K and Y ∈ c(H0), where c(H0) is the convex hull of the Weyl orbit of

H0 (definitions of convex hull, Weyl orbit, and the precise theorems can be found in [25]). The

time-optimal tori theorem is further discussed in “Lie Theory for Quantum Control” by Dirr

and Helmke in 2008 [26]. In particular, we point out that it holds only for bilinear systems that

admit a Cartan-like decomposition as above, where G/K is a Riemannian symmetric space.

3.2.3 Comments on Sussmann/Khaneja

The results by Sussmann/Khaneja effectively show, coupled with Nielsen, that the case of zero

drift is “good,” and is well understood. Furthermore, if G/K is a Riemannian symmetric space,

then the minimum time evolution is of bang-bang form, which is also “good.” For example,

the case of two qubits satisfies this, and as such has been widely studied, where for example

G/K = SU(4)/
(
SU(2) ⊗ SU(2)

)
. Here, the single-qubit Paulis and the two-qubit Paulis each

span subalgebras that yield a Cartan decomposition of g = su(4). In this case, and in particular

in only this case for qubit systems, the geodesic distance (the value α associated with the

convex hull of the Weyl orbit) immediately corresponds to the minimum time t∗, so time-optimal

evolution is easily calculable. On the other hand, if G/K is not a Riemannian symmetric space

but rather sub-Riemannian (as is the case for higher-qubit systems such as SU(2N )/SU(2)⊗N ),

the same results do not hold. Extending these to higher-qubit systems have yielded some lower

bounds (see for example [27] and [28], as well as similarly inspired lower bounds as in [29, 30]), but

in general a full characterization of time-optimal control for these systems remains a challenge.

Studying such sub-Riemannian manifolds is a difficult task, and has been explored in particular

in [31] and [32], and is included in a comprehensive review presented in [16].

On the other hand, nevertheless even in the general case the adjoint-equivalence theorem of

Khaneja shows that the optimal time evolution can be considered to be alternating bang-bang

sequences between the controls and drift evolution (with some caveats). However, during the
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projection mapping there is no requirement to bound the number of switchings, even on whether

it is finite or infinite. One might suggest by applying Lemma (3.8) regarding finite generation

(see also, for example, [33]) combined with the construction of t∗ as an infimizing rather than

minimizing time, that assuming a finite number of switchings is a valid option. In this case,

then, we can assume that there exists an infimizing-time optimal bang-bang sequence with a

finite number of switchings for any UF ∈ G. This would then transition nicely into a comparison

with parameterized quantum circuits. It is also important to point out, though, that the bound

on the number of such switchings for finite generation is the dimension of the Lie algebra, which

scales exponentially in the number of qubits. As such, one question is whether incorporating an

allowable error ε, such that the generation is not necessarily exact, can allow this scaling to be

sub-exponential.

Another interesting point to make at this juncture is that the settings of Nielsen and Khaneja

are somewhat complementary to each other with respect to their treatment of the drift Hamil-

tonian H0. In Nielsen’s setting, the drift is effectively excluded as the constructions require

arbitrary manipulations of the total Hamiltonian. On the other hand, in Khaneja’s setting it is

in particular the drift that determines the minimum times, as it is effectively the one evolving

in G/K. Thus, one could think of Nielsen as discussing movements within K by the controls in

relation to gate sequences (for him, K = G), whereas Khaneja discusses movements outside of

K by the drift. What is yet to be determined, then, is the relation between Khaneja’s adjoint

representation and minimal gate sequences discussed by Nielsen. It is the hope that with the

bang-bang assumption above, we can get closer to making such connections.

3.3 Open Questions and Approaches

Here we suggest and justify the importance of a few open questions derived from these results:

1. How does the minimum time T ∗ scale with the allowable error ε? How does this scal-

ing change when we switch between the assumptions of bang-bang optimality, piecewise-

constant functions, or any locally bounded measurable functions?

2. How does the minimum number of switchings, or the minimum number of steps in the

finite generation scheme, scale with the allowable error ε?

3. How does the minimum time T ∗M scale with the number of switchings M? That is, given

bang-bang optimality and a fixed maximal number of switchings M , what is the short-
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est sum of time evolutions for a sequence? How does this relationship change when an

allowable error ε is introduced?

For each of these questions, any introduction of ε can either be a fixed value, or a scaling factor

such as o(1) or “constant in the number of qubits.”

To begin answering any of these questions, one might initially try to apply Nielsen, Sussmann,

and Khaneja’s results to small systems of two or three qubits. As mentioned above, the case

of two qubits has been well studied in the Sussmann/Khaneja context. Both Nielsen’s lower-

and upper- bound results are trivial in the case of two qubits, as his gate set includes all one-

and two- qubit gates, so the minimum gate complexity satisfies CG [U ] = 1 for all U ∈ SU(4).

Perhaps with the inclusion of PQCs, as will be justified in section 4, one could outline approaches

for studying three-qubit systems under each of the models (Nielsen, Khaneja, PQC):

1. (Nielsen) Pick a three-qubit gate U for which the minimal gate sequence (consisting of

one- and two- qubit gates) is known, or easily computable. Compute the geodesic distance

CFM [U ] from a Finsler metric F given by the entrywise two-norm of the instantaneous

Hamiltonian, and compare this value to the simulated value.

2. (Khaneja) Pick the same three-qubit gate U , and compute its minimum finite generation

(note that if the ‘minimum’ is determined by the count itself, then it is the same as the

minimal gate sequence from Nielsen above) with respect to total time, for various three-

body drift Hamiltonians H0. Consider the case of full local control, so the evolution is on

SU(8)/SU(2)⊗3, and compute various minimum times depending on H0. Then compute

minimum number of switchings depending on H0. An upper bound on these minimum

times has been given, for example, by Arenz and Rabitz in 2018 [34].

3. (PQC) From the same framework as Khaneja, consider the case of full local control,

and parameterize a circuit assuming a bang-bang framework, and fixing the number of

switchings. Consider how the error scales with this number of switchings.

4 PQC’s and Bang-Bang Time-Optimal Control

One of the most promising models for quantum computation in the modern NISQ era is that of

variational quantum algorithms executed on parameterized quantum circuits, defined earlier in

(2.2.2). We refer to [11] for a full review of the field, and a recent review by Magann et al. [35]

that has shown relationships between parameterized quantum circuits and the quantum control
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model. Furthermore, we point out that Lloyd [36] and Biamonte [37] have proven the existence

of universal parameterized quantum circuits by demonstrating their ability to polynomially

simulate the discrete quantum circuit model. Each of the methods utilize, at their core, two

differing measures of complexity: the total number of layers in the parameterized quantum

circuit, and the sum of the coefficients in the applications of each parameterized gate. These

two measures correspond to the circuit depth in the discrete circuit model and the total evolution

time in the controlled Schrödinger equation model respectively. In this section we propose an

alternative measure of complexity for PQC’s, inspired by the concept of minimizing the number

of switchings in bang-bang time-optimal control, that may be better suited for comparing the

various models.

Proposition 4.1. Consider a parameterized quantum circuit P implementing a unitary U in

the following way:

U =

L∏
j=1

e−iαjHj,1e−iHj,2 , αj ∈ R+ ∪ {0}

Then, we propose a new measure of complexity Cnew[P] = L ·
∑L
j=1 αj that in particular depends

on both L and {αj}.

We note that Cnew[P ] is effectively the product of the two complexities presented by Lloyd [36]

and Biamonte [37]. The inclusion of the product of the terms is also inspired by the measure of

complexity T ·max0≤t≤T ‖H(t)‖ for adiabatic quantum computation as presented in [38] (which

was beyond the scope of this current work but is another commonly studied model of quantum

computation).

One of the reasons behind this proposed measure of complexity as opposed to the more

commonly used measure of simply counting the number of layers L is inspired by the controlled

Schrödinger equation model. For example, one particular variational quantum algorithm, called

the quantum approximate optimization algorithm (QAOA), is implemented on a PQC to solve

combinatorial optimization problems [39]. Inspired by the aforementioned adiabatic quantum

computation model, this particular PQC has Hj,1 = H1 for all j odd and Hj,1 = H2 for all j

even, and e−iHj,2 = 1 for all j ∈ [1 . . . L] (as in the format of Proposition (4.1)), such that at

each layer j one of the Hamiltonians H1, H2 is applied for a particular time αj .

One can notice that this is precisely the form of bang-bang control in the controlled Schrödinger

equation, with H1 as the “drift” Hamiltonian and H2 as the single “control” Hamiltonian. We
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see that the application of e−it1H1 incurs the same cost as the application of e−it2H1 for all

times t1, t2. This shines some light on showing that recent claims for L = 1 QAOA being able

to converge and effectively solve certain computational problems [39] are somewhat misleading,

since it is saying that all unitaries of the form e−it1H1e−it2H2 are “equally difficult/easy” to

reach.

Thinking back to the time-optimal tori theorem from section 3.2.2, in the case of a Rieman-

nian symmetric space this yields a constant measure of complexity L = 2 for all unitaries U ,

which would be a somewhat misleading concept. Nevertheless, the fact that in the case of a

Riemannian symmetric space the depth of the associated PQC is constant presents a potentially

interesting connection: does the depth of a PQC effectively measure, or scale with, the rank

of G/K? (In the Riemannian symmetric case, the rank is 1) In this sense, even an affirmative

answer to this question, which would in and of itself be of significant interest, would not yield a

“proper” measure of complexity for a parameterized quantum circuit, since as a discrete measure

it effectively groups together far too many PQCs with the same complexity. On the other hand,

Lloyd’s approach [36] of simply adding the application times
∑
αj can be seen to correspond to

the total evolution time in the controlled Schrödinger equation model, which by itself has been

seen to be difficult to connect with discrete models such as the circuit model.

As such, we are proposing here a way to combine these two measures into a “hybrid dis-

crete/continuous” measure. One can notice that this measure of complexity is equally valid for a

particular bang-bang sequence in the controlled Schrödinger equation model, since as mentioned

above the form of a parameterized quantum circuit in Proposition (4.1) is precisely translatable

as a bang-bang sequence. Therefore, one could also propose that the measure of complexity for

a bang-bang control sequence be related to this measure as well:

Proposition 4.2. Consider the setting of the controlled Schrödinger equation, with the bilinear

control system H(t) = H0 +
∑m
k=1 fk(t)Hk, with the Lie subgroup K = exp{k}, where k is the

subalgebra generated by the controls −iH1, . . . ,−iHm. Now, consider a bang-bang sequence B

implementing a unitary U in the following way:

U =

L∏
j=1

(
e−itjH0 · kj

)
with tj ∈ R+ ∪ {0}, kj ∈ K

Then, we propose a new measure of complexity Cnew[B] = L ·
∑L
j=1 tj.

Here, one can notice the similarity between a parameterized quantum circuit P and a bang-
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bang sequence B, where the only difference is that while the non-parameterized terms e−iHj,2 in

P are pre-determined, the elements kj in B can be chosen at will. Nevertheless, the components

of P,B that are included within the complexity Cnew are noticeably the same. It is the hope of

this work that this intuitive measure of complexity could be an effective comparison metric for

future studies of both parameterized quantum circuits and time-optimal quantum control.

5 Concluding Remarks

In this work, we have attempted to provide a method of discussing different models of quan-

tum computation using a framework of comparing their various measures of complexity in the

resources used. In particular, we have noted the difficulty of connecting discrete and contin-

uous components such as gate count and time, as well as the importance of sub-Riemannian

considerations in discussing measures of complexity that become extremely relevant due to the

introduction of a drift Hamiltonian H0 in continuous-time models of quantum computation

such as the controlled Schrödinger equation. To connect these considerations with the recently

growing field of variational quantum algorithms on parameterized quantum circuits, we have

proposed a measure of complexity for PQCs that attempts to effectively combine both discrete

and continuous metrics.

Using this new measure, as well as the connections made to other models of quantum com-

putation, one could ask many questions worthy of further study regarding PQCs. For example,

in section 3 we briefly discussed the notion of classical versus quantum resources associated with

a particular quantum model. Particularly in the cases of PQCs and the controlled Schrödinger

equation, the classical component of finding the relevant parameters (also referred to as train-

ability) is especially important. In this sense, does trainability of a circuit P get impacted when

you fix a depth L such that the optimal solution minimizes the complexity Cnew[P]? In the

similar realm of quantum control [35], it has been observed that such difficulties arise close to

the minimum time.

Furthermore, it would be interesting to compare this new measure Cnew[P] to the existing

measures of “effective dimension” of a PQC [12, 13], and determine the relationships between

these constructions, which are less “intuitive” and more contrived than a simple function of the

number of layers or sum of coefficients. In this sense, our proposed measure of complexity can

be seen as something that is “physically relevant,” since it places bounds on the parameters

themselves of a PQC rather than through a contrived metric (and in a way that does not just
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näıvely take a sum as representing the “total time”).

Before we can design new algorithms and/or models of quantum computation, it is important

to understand how we are communicating results from such models, since it is hard to compare

them without explicitly defining the setup and resources used. Measuring complexity through

resources as we have done here is an important step in this direction, especially in defining a true

“quantum advantage” as desired when comparing these models and their resources to existing

complexity classes such as P and NP, or even the quantum classes BQP and QMA. As quantum

algorithms in the NISQ era would likely be done from using the model of parameterized quantum

circuits but implemented in a continuous-time fashion as in the controlled Schrödinger equation

model, it is our hope that the points raised in this work towards a unified model of quantum

computation would inspire further connections to be made, thereby allowing a true quantum

advantage to be defined, justified, and achieved through execution.
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