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Abstract

Designing a multi-item auction to extract optimal revenue is very difficult and often practically
infeasible, but by recruiting additional buyers to compete for the items, a seller can run a simple auction
(such as running a separate second-price auction for each item) and still extract greater revenue than
the optimal mechanism without extra buyers. The number of additional bidders necessary such that
selling the items separately (to additional bidders) guarantees greater expected revenue than the optimal
mechanism (without additional bidders) is termed the competition complexity.

Seminal work by Bulow and Klemperer showed that perhaps surprisingly, only one additional buyer
is needed in the single-item setting. But with even two independent items, things are more complex;
previous work has shown that the competition complexity for n buyers with additive values for two
items drawn independently and identically distributed from the equal revenue distribution is Ω(logn)
and O(

√
n). We seek to close the gap between the currently established upper and lower bounds by

exploring a number of different techniques to make this bound tight in n.
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1 Introduction

Consider a monopolist seller with m distinct items, facing n distinct buyers. The seller decides to run an
auction, a process in which the buyers compete to win the items by submitting bids. This setting is very
common in the real world: for example, eBay, Google, and the NYSE all use auctions to set prices for items,
ads, and stocks. In all of these cases, the seller’s goal is naturally to maximize their revenue. We define an
auction mechanism as taking as input a set of bids and outputting an allocation of the items awarded to
and a price charged to each bidder. So, what mechanism should the seller use to maximize revenue?

In the single-item setting, the revenue-optimal auction has been found by [Mye81], and is a simple and
straightforward mechanism. However, multi-item auctions are significantly more complicated. Intuitively,
it might seem that we can just treat a multi-item auction as selling the items separately since they are
independent, but this turns out to be suboptimal, even with only 1 buyer and 2 independent items from
a simple distribution [HN17]. From the buyer’s perspective, the items are independent and there is no
interaction between them, but from the seller’s perspective, the existence of additional items enriches their
strategy space and allows them to price options for which the buyer’s value has lower variance (such as
bundling the items together), thus extracting more of the buyer’s value as revenue.
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Further, the optimal multi-item auction may be randomized rather than deterministic [DDT12] or may offer
the buyer an uncountable number of distinct menu options [DDT17]. There are also instances of revenue
monotonicity, in which a distribution D+ stochastically dominates D (F (x) ≥ F +(x) for all x), yet the
optimal revenue for D strictly exceeds the optimal revenue for D+; that is, a “strictly better” distribution
achieves “strictly worse” revenue [HR15]. Given these challenges, a seller might hope that a simple auction
such as selling the items separately or bundling them together is at least approximately-optimal, but neither
one of these mechanisms provides a constant-factor approximation; the approximation gets worse as the
number of items increases [HN17].

Clearly, optimal multi-item actions are difficult and impractical to understand, so the seller may settle for
just using a simple mechanism. However, they do not want to lose out on revenue from doing this, so they
may decide to recruit additional buyers in hopes that increased competition for the items will drive prices
up. This now prompts the question: how many additional bidders are needed so that the seller can use a
simple mechanism such as selling separately, but still guarantee at least the optimal revenue (without the
additional bidders)? We term this amount the competition complexity.

1.1 Roadmap

We begin in Section 2 with a discussion of the core theoretical concepts in auction mechanism design.
Sections 3 through 5 each cover a different approach we explored to bound the competition complexity, each
beginning with additional background to familiarize the reader with the necessary theory, then detailing our
results from applying the technique. We conclude in Section 6 with notes on potential future directions of
investigation.

2 Background and preliminaries

For a comprehensive treatment of auction theory and the equal revenue distribution, we refer the reader to
[Bar20]. Here, we cover only the background theory directly used in this project.

2.1 Auction format

To begin, we assume that the seller only has the ability to specify the parameters of the auction before it is
run. Once the auction begins, the seller simply executes the auction as specified beforehand, and does not
actively participate or change the outcome with their actions.

We label the bidders as elements of the set [n] = {1, . . . , n} and the items as elements of the set [m] =

{1, . . . ,m}. In the setup phase before the auction, each bidder i draws vij , their true private valuation for each
item j, from distribution Dij . The seller does not know the value vector v⃗ (hence the term “private values”),
but does know each Dij (one can imagine that the seller can obtain information about the distribution of
values in the general population through market research, but cannot obtain the true values of each individual
bidder). The true valuations are additive, so that from a certain bidder’s point of view, their value for a set
of items is exactly the sum of their values for each item in the set.

In the auction, each bidder simultaneously submits a single sealed bid to the seller, meaning that only that
bidder and the seller see the bid. The seller thus receives a reported profile of bids, and then uses some
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mechanism to allocate the prices and charge prices accordingly. We can formally define an auction mechanism
as follows:

Definition 1 (Auction mechanism). An auction mechanism takes as input a set of bids and outputs an
allocation vector and a price vector. Let Xi(v⃗) and Pi(v⃗) be the allocation and price vectors, respectively,
for bidder i when value vector v⃗ = (v⃗1, . . . , v⃗n) (the concatenation of each individual bidder’s value vector)
is input. Then, we can formally represent the mechanism as M = (X,P ), where X = (X1(v⃗), . . . ,Xn(v⃗)),
P = (P1(v⃗), . . . , Pn(v⃗)).

Given the output allocation vector X (which is a probability distribution for each item), the seller then
samples the allocation distribution to obtain the final allocation of items to bidders. Throughout this paper,
we use the terms auction and mechanism interchangeably.

2.2 Notation

We establish the following definitions and notation for use throughout this paper:

� πi(v⃗i) ∶= Ev⃗−i←D−i [Xi(v⃗)], the expected allocation (over all other bidders reporting their true values)
for bidder i when bidding v⃗i, also referred to as the interim allocation.

� πij(v⃗i) ∶= Ev⃗−i←D−i [Xij(v⃗)], the expected probability of bidder i winning item j when bidding v⃗i, also
referred to as the interim probability.

� qi(v⃗i) ∶= Ev⃗−i←D−i [Pi(v⃗)], the expected payment of bidder i when bidding v⃗i.

� U(v⃗i,Mi(v⃗)) ∶= v⃗i ⋅Xi(v⃗) − Pi(v⃗), the utility of bidder i when the complete bidder profile is v⃗. Note
that values for items are additive, and utilities are quasi-linear (subtracting price from value).

� v⃗i ⋅ πi(v⃗i) − qi(v⃗i), the expected utility of bidder i when bidding v⃗i.

� Rev(D), the optimal achievable revenue for bidders whose values are drawn from D = ⨉
n
i=1⨉

m
j=1Dij .

� RevM(D), the expected revenue achieved by mechanism M for distribution D when buyers bid truth-
fully.

� SRev(D), the optimal achievable revenue by any mechanism that sells separately for distribution D.

� ARev(D) ∶= Rev(D) − SRev(D), the additional revenue that the optimal mechanism provides over
selling separately to bidders from distribution D. We term this the adjusted revenue.

� Val(D) ∶= Ev⃗←D [∑j maxi{vij}], the expected optimal welfare for distribution D (obtained by giving
each item to the bidder with highest value).

� If all the buyers are i.i.d., i.e. for all i, Di = D for some distribution D, then Revn(D) denotes
the optimal achievable revenue for n bidders, each of whom has values drawn from D. RevMn (D),
SRevn(D), ARevn(D), and Valn(D) are defined analogously.

� ER, the equal revenue distribution, defined by the CDF F (x) = 0 for x < 1, F (x) = 1 − 1
x

for x ≥ 1.

� ERt, the equal revenue distribution truncated at t, defined by drawing x from ER and replacing x with
t if and only if x > t.

� ERt,d, the equal revenue distribution truncated at t and discretized according to some discretization
(see Section 4 for further discussion).
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� c(n,m) ∶= min{k ∣SRevn+k(ER
m
) ≥ Revn(ER

m
)}, the competition complexity for n additive buyers

with values for m items each drawn from ER. This is the minimum number of additional buyers k
such that selling separately to n+k bidders guarantees at least as much revenue as the optimal revenue
for n bidders.

2.3 Properties of auctions

Naturally, buyers are incentived to maximize their expected payoff, regardless of whether or not they bid
their true valuations v⃗i. However, in order to reason about expected revenue, the seller would like the buyers
to bid their true values (otherwise, attempting to reason about non-truthful bids rather than true values
may be challenging, or possibly not even a well-posed question). This motivates the following definition of
Bayesian incentive compatibility, which states that for each buyers, if all other buyers bid truthfully, it is in
their best interest to also bid truthfully.

Definition 2 (Bayesian incentive compatible). A mechanism M = (X,P ) is Bayesian incentive compatible
(BIC) if for all bidders i, for all v⃗i, v⃗

′

i,

v⃗i ⋅ πi(v⃗i) − qi(v⃗i) ≥ v⃗i ⋅ πi(v⃗
′

i) − qi(v⃗
′

i).

A BIC auction achieves a Bayesian Nash equilibrium in which every buyer bids their true valuation.

We also define two additional properties that are crucial to ensuring that all agents (the seller and all the
bidders) participate willingly in the auction.

Definition 3 (Individually rational). A mechanism M = (X,P ) is ex interim individually rational (IR) if
for all i, v⃗i,

v⃗i ⋅ πi(v⃗i) − qi(v⃗i) ≥ 0.

That is, the expected utility is positive for all bidders. An auction that is ex interim IR prohibits the seller
from setting arbitrarily high prices, because then the bidders can just choose to not participate at all.

Definition 4 (No positive transfers). A mechanism M = (X,P ) is no positive transfers (NPT) if for all
i, v⃗i,

qi(v⃗i) ≥ 0.

That is, the seller never expects to pay the bidders. Otherwise, the seller could just choose not to run the
auction at all.

In our work, we are concerned with the optimal achievable revenue from a BIC, IR, NPT auction.

2.4 Related work

We first establish the connection between revenue and competition complexity that will inform our analysis.

Proposition 5 ([Bar20]). The revenue obtained from selling m items separately to n buyers, with each value
drawn from ER, is mn. That is,

SRevn (ER
m
) =mn.
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In particular, if we consider the competition complexity when m = 2, we have

SRevn+k(ER
2
) ≥ Revn(ER

2
)

2n + 2k ≥ Revn(ER
2
)

2k ≥ Revn(ER
2
) − 2n = Revn(ER

2
) − SRevn(ER

2
)

Ô⇒ c(n,2) =
ARevn(ER

2
)

2
.

That is, the competition complexity and the adjusted revenue have the same order of growth in n. Thus, much
of the previous work on bounding the competition complexity has framed the problem in terms of bounding
the adjusted revenue (note that while the optimal mechanism is generally challenging to understand, we
may still be able to reason about the optimal revenue, and consequently the adjusted revenue). We continue
using this framework throughout our work.

Currently, it is known that the competition complexity is c(n,2) = Ω(logn) and c(n,2) = O(
√
n). In

particular, the best known bounds are:

Theorem 6 (Upper bound, due to [BW18]). The competition complexity of n bidders with additive values
over m independent items is at most n(log(1 +m/n) + 2) (tight when n ≤m) and also at most 9

√
nm (tight

when n ≥m).

Theorem 7 (Lower bound, due to [BW18]). The competition complexity of n bidders with additive values
over m = 2 i.i.d. items from ER2 is at least logn/20.

3 Dual flows

In this section, we seek to utilize the duality-based framework for Bayesian mechanism design developed by
[CDW16]. A thorough exposition of the theory of dual flows is included in [Bar20], so here we provide only
a brief overview of the necessary background.

3.1 Introduction to Lagrangian duality

Definition 8 (Lagrangian relaxation). Consider a linear program (LP) L of the form:

max∑
i

cixi,

subject to the constraints

∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

Let S be a subset of the constraints. For all j ∈ S, let λj ≥ 0 be given, and let λ⃗ be the vector of all {λj}j∈S.

Then, a Lagrangian relaxation of the above LP for the subset S and Lagrangian multipliers λ⃗ is the following

(which we call Lλ⃗S):

max∑
i

cixi +∑
j∈S

λj ⋅ (bj −∑
i

Ajixi) ,
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subject to the constraints

∑
i

Ajixi ≤ bj , ∀j ∉ S

xi ≥ 0, ∀i.

Lemma 9. For any linear program L, all subsets of constraints S, and all non-negative Lagrangian multi-

pliers λ⃗ for constraints in S, the optimal value of Lλ⃗S is at least the optimal value of L.

Now, consider the revenue-maximizing LP for a BIC, IR, NPT multi-item auction with n bidders with
valuation functions drawn from D = ⨉iDi:

Variables:

� xi,S(v⃗), the probability that bidder i receives set S on input v⃗ (a complete bidder profile).

� xS⃗(v⃗), the probability of selecting the partition S⃗ of the items on input v⃗.

� πi,S(vi), the interim probability that bidder i receives set S when reporting vi(⋅) (i.e., the probability
in expectation over all other bidders bidding their true types v⃗−i).

� pi(vi), the interim price paid by bidder i when reporting vi(⋅) (in expectation over all other bidders
bidding their true types).

Constraints:

� πi,S(vi) = ∑v⃗−i f−i(v⃗−i) ⋅ xi,S(vi; v⃗−i) for all i, vi, S (guarantees that interim probabilities are computed
correctly).

� xi,S(v⃗) = ∑S⃗∣Si=S
xS⃗(v⃗) for all i, S, v⃗ (guarantees that xi,S is computed correctly).

� ∑S⃗ xS⃗(v⃗) = 1, xS⃗(v⃗) ≥ 0 for all S⃗, v⃗ (guarantees that probabilities of selections are non-negative and
sum to 1).

� ∑S vi(S) ⋅ πi,S(vi) − pi(vi) ≥ ∑S vi(S) ⋅ πi,S(v
′

i) − pi(v
′

i) for all i, vi, v
′

i (BIC constraints).

� πi,S(∅) = pi(∅) = 0 for all i, S (interim probabilities and payments are 0 for any bidder who chooses
not to participate).

Objective: Maximize the expected revenue; that is,

max∑
i

∑
vi

fi(vi) ⋅ pi(vi).

We now construct a Lagrangian relaxation by putting the Lagrangian multiplier λi(vi, v
′

i) on the BIC con-
straint for a bidder of type vi misreporting v′i. By Lemma 9, a feasible solution to this relaxed LP upper
bounds the optimal achievable revenue. We refer to a profile of Lagrangian multipliers λ⃗ as useful if it results
in a finite upper bound, and it can be shown that:
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Lemma 10. A profile of Lagrangian multipliers λ⃗ is useful if and only if

λi(vi, v
′

i) = fi(vi) +∑
v′i

λi(v
′

i, vi)

for all i, vi.

We can interpret this condition as follows: for all i, there is a flow network with a super source and a super
sink (where the sink is ∅, the type corresponding to not participating). There is an internal node for each
vi ∈ supp(Di). There is flow from the source to each vi of value fi(vi), and flow from each vi to v′i of λ(vi, v

′

i).
Then λ⃗ is useful if and only if this picture is a flow; that is, the flow leaving a point vi is equal to the flow
entering vi plus the density at vi.

Next, define

Φλ⃗i,S(v⃗i) ∶ =
∑v′i

λi(vi, v
′

i)vi(S) − λi(v
′

i, vi)v
′

i(S)

fi(vi)

= vi(S) −
∑v′i

(v′i(S) − vi(S)) ⋅ λi(v
′

i, vi)

fi(vi)
,

which we can interpret as the virtual valuation function of bidder i when their real valuation function is
vi(⋅).

Lemma 11 ([CDW16, BW18]). The expected revenue of the optimal mechanism does not exceed the sum of
the expected maximum virtual value for each item. That is,

Revn(ER
m
) ≤

m

∑
j=1

Ev⃗←(ER
m

)n [max
i∈[n]

{Φλij(v⃗i)}] .

Thus, our approach is to attempt to find a profile of Lagrangian multipliers (satisfying the flow constraints,
so that the profile is useful) such that the upper bound furnished by Lemma 11 is logarithmic (or at least
improves upon the current upper bound).

Further, [Bar20] describes a framework for analyzing flow in a continuous setting (since ER2 is a continuous
distribution) and a quantile transform of values. The latter allows us to reduce analysis for two items to
flows over the unit square, originating at (q1, q2) = (1,1) and terminating at (q1, q2) = (0,0). To do this, we
let qi be the quantile corresponding to vi (for i = 1,2) and note that for ER, we have qi = 1 − 1

vi
, vi =

1
1−qi

.

The key property of note is that qi is uniformly distributed on the interval [0,1].

Previous analysis of linear flows yielded only O(
√
n) bounds on competition complexity, so we now attempt

to analyze nonlinear flows. We refer the reader to [Bar20] for precise definitions of all formalisms used, and
simply adopt the notation used therein without further explanation.

3.2 Piecewise linear flow

Our first nonlinear flow network was a simple piecewise linear flow, attempting to simultaneously capture
properties of two different linear flows analyzed by [Bar20].

Proposition 12. The symmetric piecewise linear flow originating from (1,1) and terminating at (0,0) does
not improve upon the O(

√
n) competition complexity bound.
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Proof. Since the proposed lines of flow are not smooth along the boundary q1 + q2 = 1, we consider the
portions of the unit square above and below the boundary separately. We first consider the amount of flow
accumulated in the top half.

For a given point (q1, q2) with q1 + q2 > 1 (and WLOG q1 > q2), let (α,1 − α) be the point where the line of
flow intersects the boundary q1 + q2 = 1, and let (

β
2
, β
2
) be the foot of the perpendicular from (q1, q2) to the

line q1 = q2. Clearly we have α ∈ [ 1
2
,1], β ∈ [1,2], and α and β are uniformly distributed over their respective

integrals. Further, each flow line is parametrized by a unique value of α, and for fixed α, each point on the
flow line is parametrized by a unique value of β.

Using coordinate geometry and algebra we can see that we have

α =
q2 − 1

q1 + q2 − 2
β = q1 + q2

q1 = 2α + β − αβ − 1 q2 = αβ − 2α + 1

∂q1
∂α

= 2 − β
∂q2
∂α

= β − 2

∂q1
∂β

= 1 − α
∂q2
∂β

= α.

Then we can compute

h(α,β) = ∣
∂q1
∂α

⋅
∂q2
∂β

−
∂q2
∂α

⋅
∂q1
∂β

∣ = 2 − β,

so ∂λ
∂β

= −h = β − 2 Ô⇒ λ(α,β) = β2

2
− 2β + c for some constant c. Recall that since β ∈ [1,2], we choose the

maximum value of c such that λ(α,2) is nonpositive. This gives c = 2, so we have

λ(α,β) =
β2

2
− 2β + 2 =

(β − 2)2

2
.
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Finally, we compute

Φ1 =
1

1 − q1
−

∂q1
∂β

⋅ λ(α,β)

h(α,β) ⋅ (1 − q1)2

=
1

2(α − 1)(β − 2)
,

Φ2 =
1

1 − q2
−

∂q2
∂β

⋅ λ(α,β)

h(α,β) ⋅ (1 − q2)2

=
1

2α(2 − β)
.

Note that both virtual values are always positive in this region.

To better understand the competition complexity that results from this flow, we simulated the average
adjusted revenue as a function of n. As discussed in [Bar20], the adjusted revenue comes from flow lines
strictly in the interior of the unit square (bidders with quantile values on the boundary of the square will
contribute 2n to the total revenue), so we now take α ∈ [ 1

2
,1), β ∈ [1,2). For n ∈ [100,500], we generated n

random draws of α and β, computed the resulting virtual values Φ1 and Φ2, and then calculated the sum of
the maximum Φ1 and the maximum Φ2.

When numerically evaluated, we found that the flow accumulated above the boundary appears to be Θ(
√
n).

Then, regardless of what happens below the boundary, the total amount of flow accumulated over the entire
square must be Ω(

√
n), so this profile cannot possibly result in an upper bound on ARevn(ER

2
) that is

O(logn).

3.3 General smooth nonlinear flows

To avoid the issue of having to analyze different regions of the unit square separately, we next attempted to
construct a more general nonlinear flow network originating from (1,1) and terminating at (0,0), consisting
of smooth flow lines. We will let these flow lines have the form y(x) and again parametrize each flow line by
α, where (α,1 − α) denotes the intersection with x + y = 1. We require the following properties:

1. y′ increases smoothly from y′(0) = f(α) to y′(α) = 1 along the smooth function gα (g is a family of
functions, each parametrized by α):

y′(x) = f(α) + gα (x
a
) , gα(0) = 0, gα(1) = 1 − f(α).

2. Boundary conditions of slope: lim
α→

1
2

+ f(α) = 1, limα→1− f(α) = 0.

3. f is decreasing and continuous in α, and f(α) < 1−α
α

≤ 1.

4. ∫
α
0 y′(x)dx = 1 − α.

However, we claim that this is impossible.

Proposition 13. Such a function y(x) satisfying properties 1-4 does not exist.
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Proof. Substituting property 1 into property 4 gives

∫

α

0
y′(x)dx = ∫

α

0
(f(α) + gα(

x
α
))dx

1 − α = αf(α) + ∫
α

0
gα(

x
α
)dx = αf(α) + ∫

1

0
αgα(x)dx

1

α
− 1 = f(α) + ∫

1

0
gα(x)dx

f(α) =
1

α
− 1 − ∫

1

0
gα(x)dx.

Now, define

kα ∶=
∫

1
0 gα(x)dx

1 − f(α)
∈ [0,1].

Observe that k1/2 = k1 = 0, and we have

f(α) =
1

α
− 1 − kα(1 − f(α)) Ô⇒ f(α) = 1 +

1

α
+

2

kα − 1
.

We seek a kα so that f(α) is decreasing from f ( 1
2
) = 1 to f(1) = 0. Clearly kα = 0 works. Now suppose kα

is not identically 0, so it attains maximum value kα′ = ε > 0 for some α′ ∈ (0,1) (if α′ is not unique, take the
largest α′). We consider f(α′ + δ) for δ > 0:

f(α′ + δ) ≤ f(α′)

1 +
1

α′ + δ
+

2

kα′+δ − 1
≤ 1 +

1

α′
+

2

ε − 1

2

1 − kα′+δ
≥

1

α′ + δ
−

1

α′
+

2

1 − ε
=

2α′(α′ + δ) − δ(1 − ε)

α′(α′ + δ)(1 − ε)

kα′+δ ≥ 1 −
2α′(α′ + δ)(1 − ε)

2α′(α′ + δ) − δ(1 − ε)
=

2α′(α′ + δ)ε − δ(1 − ε)

2α′(α′ + δ) − δ(1 − ε)
.

We also have kα′+δ < ε, so this gives

2α′(α′ + δ)ε − δ(1 − ε)

2α′(α′ + δ) − δ(1 − ε)
< ε

δε(1 − ε) < δ(1 − ε),

which holds as long as ε < 1. But we already know kα ≤ 1, so this does not provide us with new information.

On the other hand, take α′ to be the smallest value such that kα′ = ε (the max attained by kα), and consider
f(α′ − δ) for δ > 0:
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f(α′ − δ) ≥ f(α′)

1 +
1

α′ − δ
+

2

kα′−δ − 1
≥ 1 +

1

α′
+

2

ε − 1

2

1 − kα′−δ
≤

1

α′ − δ
−

1

α′
+

2

1 − ε
=

2α′(α′ − δ) + δ(1 − ε)

α′(α′ − δ)(1 − ε)

kα′−δ ≤ 1 −
2α′(α′ − δ)(1 − ε)

2α′(α′ − δ) + δ(1 − ε)
=

2α′(α′ − δ)ε + δ(1 − ε)

2α′(α′ − δ) + δ(1 − ε)
.

We also have kα′−δ ≥ 0, so we require

2α′(α′ − δ)ε + δ(1 − ε)

2α′(α′ − δ) + δ(1 − ε)
≥ 0.

Since ε < 1, the numerator of the above expression is smaller than the denominator. We can verify that for

δ > 2α′
2

2α′+ε−1
, we have 2α′(α′ − δ)+ δ(1− ε) < 0, thus 2α′(α′ − δ)ε+ δ(1− ε) < 0, and 2α′(α′−δ)ε+δ(1−ε)

2α′(α′−δ)+δ(1−ε)
≥ 0 holds.

For δ < 2α′
2

2α′+ε−1
, we have 2α′(α′ − δ) + δ(1 − ε) > 0, so we now require

2α′(α′ − δ)ε + δ(1 − ε) > 0

2α′2ε > (2α′ε + ε − 1)δ

If ε > 1
1+2α′

, then δ < 2α′2ε
2α′ε+ε−1

. But 2α′2ε
2α′ε+ε−1

≤ 2α′2

2α′ε+ε−1
, so we have a contradiction.

Otherwise ε < 1
1+2α′

, which implies δ > 2α′2ε
1−2α′ε−ε

. But this means that for δ < 2α′2ε
1−2α′ε−ε

, the numerator is
negative while the denominator is positive, so we end up with kα′−δ < 0, which is a contradiction.

Thus, taking δ to be sufficiently small gives us a contradiction for kα′−δ, so we conclude that such y(x)
cannot exist.

While other nonlinear flow lines are likely to exist, the above shows that they cannot simultaneously satisfy
basic symmetry and smoothness constraints. Without insisting on both of these constraints, we are unlikely
to be able to analyze the resulting flows by hand (and even satisfying properties 1-4 is not a guarantee of
straightforward analysis), so continuing to study nonlinear flows does not appear to be a promising direction.
Instead, we move forwards with other forms of computational analysis.

4 Discretizations and computational analysis

Our primary tool for analyzing the optimal revenue via computation was RoaSolver [Shu19], a software pro-
gram that, given the distribution of bidder values for each item, constructs the linear program corresponding
to the BIC, IR, and NPT constraints and computes the revenue-optimal auction. The goal was to better
understand whether the competition complexity behaves more like Θ(logn), matching the current lower
bound, or like Θ(

√
n), matching the current upper bound.

The major limitation of the software is that it only takes discrete probability distributions as input, so it
is impossible to draw values perfectly from the equal revenue distribution. Further, RoaSolver runs in size

12



polynomial in s2, where s is the size of the support of the distribution, and in practice can only be used
up to s = 14. Therefore, effectively converting the unbounded, continuous ER distribution into a truncated,
discretized distribution ERt,d is a non-trivial, but important task.

4.1 Initial discretization

We initially discretized along the first 14 powers of 2, resulting in the distribution shown in Table 1. The
probabilities of drawing v, P(v), were calculated to ensure that ERt,d was stochastically dominated by ER
while also being as close of an approximation as possible, by using

Pv←ERt,d
(v = 2k) =

⎧⎪⎪
⎨
⎪⎪⎩

Pv←ER (v ∈ [2k,2k+1)) for k ∈ [0,12]

Pv←ER (v ≥ 2k) for k = 13

=

⎧⎪⎪
⎨
⎪⎪⎩

1
2k
− 1

2k+1
for k ∈ [0,12]

1
2k

for k = 13
.

v 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P(v) 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

1
4096

1
8192

1
8192

Table 1: Initial ER discretization, s = 14.

We used RoaSolver to compute the optimal revenue for an auction with m = 2 items and n ∈ [1,100] bidders,
and then plotted ARevn(ER

2
t,d) as a function of n, as shown in Figure 1. The solution output by RoaSolver

appears logarithmic for small values of n (for n ∈ [1,36], the adjusted revenue had squared error ≈ 0.162 to
the closest fit square root function, but squared error ≈ 0.002 to the closest fit logarithmic function [Bar20]).

Figure 1: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, computed by RoaSolver using the

distribution detailed in Table 1.

However, the adjusted revenue begins to decrease around n = 36. We rationalized this as being due to the
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truncation of the distribution, where we can see that when we draw 2n values from ER, the probability of

having at least one value above a truncation cutoff T is 1 − (1 − 1
T
)
2n

. By a union bound this is bounded

above by 2n
T

, and for the values of n and T we investigated here, this bound is close to tight. Thus as n
grows, we lose more and more revenue from truncation, meaning that the discretization is no longer a good
simulation of the true equal revenue curve. But for small values of n, we expect the discretization to be a
fairly good simulation, giving us some degree of confidence that the competition complexity is Θ(logn).

4.2 Discretization optimizations

We made various modifications to the initial discretization as described below and plotted the adjusted
revenue for each discretization. For each of the following discretizations, P(v) is reported as the unnormalized
probability of drawing value v (so the normalized probability is obtained by dividing by the sum of all the
unnormalized probabilities.) Probabilities were computed using the same method described in Section 3.1
to ensure stochastic dominance. We first analyzed each discretization separately, and then plotted the best
adjusted revenue across all tested discretizations for each n, shown in Figure 9.

By increasing the largest point in the discretization to a very high value of 223 as in Table 2, we were able to
minimize the effects of truncation for n in the interval [1,100], so that the computed adjusted revenue was
monotonically increasing in n. This experiment suggests that a single extremely high value in the support
is sufficient to avoid significant revenue loss due to truncation.

v 1 2 4 8 16 32 64

P(v) 4194304 2097152 1048576 524288 262144 131072 65536

v 128 256 512 1024 2048 4096 8388608

P(v) 32768 16384 8192 4096 2048 2047 1

Table 2: Modification of initial ER discretization, with the largest point changed from 213 to 223, s = 14.

Figure 2: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 2.

14



We discretized low values extremely finely at the expense of mid-range and high values, but attempted to
compensate by taking larger high values and an extremely high truncation cutoff (Table 3). However, this
resulted in decreasing adjusted revenue starting at a low value of n ≈ 20. This can be understood using
the same concept as the loss due to truncation: given the limited support size, putting too much weight on
low values means that we do not accurately discretize mid-range and high values, from which we lose more
and more revenue as n increases. The inaccuracy in Table 3 becomes significant at a lower point in the
distribution than in Table 1, explaining the earlier onset of decreasing adjusted revenue.

v 1 1.333 1.5 2 3 4 10

P(v) 7500000 2500000 5000000 5000000 2500000 4500000 1500000

v 20 100 200 1000 2000 10000 10000000

P(v) 1200000 150000 120000 15000 12000 2997 3

Table 3: Particularly fine discretization of lower values and higher truncation cutoff, s = 14.

Figure 3: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 3.

The discretization in Table 4, an “intermediate” discretization between Table 2 and Table 3 also performed
well. As shown in Figure 9, this discretization performed better for small values of n (n ≤ 14), while Table 2
performed better for n ≥ 15. This suggests that when n is small, it is important to finely discretize low
values (as it is likely that all bidders will have small values, so we want to accurately capture their values in
this range rather than rounding down to a few small values), but for larger n we must discretize mid-range
values somewhat more carefully.

v 1 2 3 4 5 10 20

P(v) 7500000 2500000 1250000 750000 1500000 750000 450000

v 50 100 200 500 1000 2500 5000000

P(v) 150000 75000 45000 15000 9000 5997 3

Table 4: Lower values discretized more finely than Table 2 but less extremely than Table 3, s = 14.
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Figure 4: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 4.

Removing the second highest point to get Table 5 did not result in significant revenue loss, even with s = 13.
We also see that the second highest point in the support does not have to be very large (e.g. 1000 suffices).

v 1 2 3 4 5 10 20

P(v) 7500000 2500000 1250000 750000 1500000 750000 450000

v 50 100 200 500 1000 5000000

P(v) 150000 75000 45000 15000 14997 3

Table 5: Modification of discretization in Table 4 with second highest point removed, s = 13.

Figure 5: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 5.
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When we removed 5, a relatively low point, from the support (Table 6), adjusted revenue suffered noticeably
for all n and became approximately constant very quickly (at n ≈ 7). This indicates that when attempting
to reduce the size of the support, maintaining fine discretization of the low values remains important.

v 1 2 3 4 10 20

P(v) 7500000 2500000 1250000 2250000 750000 450000

v 50 100 200 500 1000 5000000

P(v) 150000 75000 45000 15000 14997 3

Table 6: Modification of discretization in Table 5 with low value 5 removed, s = 12.

Figure 6: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 6.

We modified Table 4 to discretize mid-range values less finely so that we could include additional high values
in the support. However, the resulting Table 7 performed less well for all n (with the exception of n = 4),
suggesting that in the n ∈ [1,100] range, the low and mid-range values are more important to discretize well
than the high values.

v 1 2 3 4 5 10 25

P(v) 15000000 5000000 2500000 1500000 3000000 1800000 900000

v 100 250 1000 2500 10000 25000 10000000

P(v) 180000 90000 18000 9000 1800 1197 3

Table 7: Modification of Table 4 with larger, less finely discretized higher values, s = 14.
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Figure 7: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 7.

Finally, we created Table 8 an overall coarse distribution with generally high values. This resulted in
relatively low adjusted revenue for all n (although the extreme high point prevented a dropoff in revenue due
to truncation loss), further supporting our conclusions that for n ∈ [1,100], it is more important to discretize
low values, and adding more high values does not improve adjusted revenue significantly.

v 1 1.5 2 3 6 24

P(v) 7500000 2500000 1250000 2250000 750000 450000

v 1209600 604800 604800 604800 453600 120960

P(v) 25200 4320 630 80 9 1

Table 8: Discretization using factorials (giving a coarse discretization with very high values), s = 12.
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Figure 8: ARevn(ER
2
t,d) for m = 2 items and n ∈ [1,100] bidders, using the distribution detailed in Table 8.

In the masterplot (Figure 9), we can see that the best adjusted revenue for n ∈ [1,100] appears logarithmic.
The adjusted revenue had squared error ≈ 0.453 to the closest fit square root function (y = 0.115

√
x+ 0.685),

but squared error only ≈ 0.026 to the closest fit logarithmic function (y = 0.297 logx + 0.373).

Figure 9: Best adjusted revenue across the discretizations tested, for m = 2 items and n ∈ [1,100] bidders.
Here, label 3 is the discretization in Table 2, label 5 is the discretization in Table 4, and label 6 is the
discretization in Table 7.
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4.3 Discrete to continuous revenue bounds

With a few well-performing discretizations in hand and the issue of truncation resolved, we then sought to
understand how much revenue we lose from the process of discretization, since ERt stochastically dominates
ERt,d. Our key tool is a bound on the revenue from a product distribution D+ that stochastically dominates
another product distribution D in terms of Rev(D) and the expected difference between D+ and D, via a
reduction from a mechanism for D to a mechanism for D+ due to [RW15].

In this section, we use the following notation (slightly different from the notation used throughout the rest
of this paper): let φj(v) denote the (random) allocation awarded to bidder j when reporting type v; we
also abuse notation by letting v(φ) denote the expected utility (over the randomness in the mechanism and
the other bidders reporting their true types), that a bidder with type v gains from a random allocation φ.
Let pj(v) denote the expected price paid by bidder j when reporting type v (over the same randomness).
Further, δj(⋅) denotes the random function v+j (⋅)− vj(⋅) when couples v+ and v are sampled jointly from D+

and D. We again abuse notation and refer to δj as the distribution over δj(⋅) as well (allowing us to write
terms like Val(δ)). Lastly, for v drawn from D+, we denote v’s couple from D by v′.

The reduction proceeds in two phases. Informally, the first phase is a surrogate sale, in which buyers from
D+ pay to be represented in the auction by a surrogate from D. The replicas for a bidder j are bidder
j’s “competition” for buying the surrogates, which allows the seller to decide how to price the surrogates
appropriately. The second phase is the surrogate competition, in which the surrogates participate in the
auction. Finally, each bidder (from D+) is awarded their surrogate’s allocation and pays the price charged
to their surrogate, plus the price of their surrogate from the surrogate sale.

Phase 1, Surrogate Sale:

(1) Let M be any BIC mechanism for buyers from D. Multiply all prices charged by M by (1 − ε) and call
the new mechanism Mε. Interpret the ε fraction of prices given back as rebates.

(2) For each bidder j, create r − 1 replicas sampled i.i.d. from D+j and r surrogates sampled i.i.d. from Dj .
Let r →∞.

(3) Ask each bidder to report their value vj(⋅).

(4) Create a weighted bipartite graph with bidder j and the r−1 replicas on the left and the r surrogates on
the right. The weight of an edge between a replica (or bidder j) with type rj(⋅) and surrogate of type
sj(⋅) is the utility of rj for the expected outcome of Mε when reporting sj , which is rj(φ

ε
j(sj))− p

ε
j(sj).

(5) Compute a maximum perfect matching and VCG prices in this bipartite graph; henceforth refer to it
as the VCG matching. If a replica (or bidder j) is unmatched in the VCG matching (for instance if all
edges incident to some replica have negative weight), add an edge to a random unmatched surrogate.
The surrogate selected for bidder j is their match.

Phase 2, Surrogate Competition

(1) Let sj denote the surrogate chosen to represent bidder j in Phase 1, and let s⃗ denote the entire profile
of surrogates (the ones matched to real buyers). Have the surrogates participate in Mε.

(2) If bidder j was matched to their surrogate through VCG, charge them the VCG price and award them
Mε
j (s⃗) (recall that this auction outcome consists of an allocation and a price; the price is added onto

the VCG price). If bidder j was matched to a random surrogate after VCG, award them nothing and
charge them nothing.
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Theorem 14 (Implicit in [RW15]). Let M ′ denote the mechanism obtained by the above reduction, starting
from any BIC mechanism M for buyers from D. Then M ′ is BIC for bidders from D+, and for any ε ∈ (0,1),
we have

RevM
′

(D
+
) ≥ (1 − ε)

⎛

⎝
RevM(D) −

1

ε
E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
.

Here, our major contribution is applying Theorem 14 to D+ = (ER
2
t )
n
, D = (ER

2
t,d)

n
, and M the mecha-

nism output by RoaSolver. In particular, we explicitly evaluate the “error term” (the expected value term
subtracted from RevM(D)) in terms of the parameters of D.

Lemma 15 (Lower bound on Revn(ER
2
t )). Let ERt,d have support {x1 = 1, x2, . . . , xs = t}. Then for any

ε ∈ (0,1), we have

Revn(ER
2
t ) ≥ (1 − ε)(Revn(ER

2
t,d) −

2n

ε

s−1

∑
k=1

s−1

∑
`=1

φ1(xk, x`) (
1

x`
−

1

x`+1
) log

xk+1
xk

) .

Proof. Our goal is to find an explicit formula for the expectation E [ 1
r ∑j∑rj δj(φ

M
j (sj))], where the ex-

pectation is taken over the sampling of the j bidders with values from ER2
t and the randomness in the

mechanism. Observe that we have

E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

n

∑
j=1

1

r
∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

n

∑
j=1

1

r
∑
rj

δj(φ
M
j (r′j))

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎣

n

∑
j=1

Ev⃗←ER2
t
[δj(φ

M
j (v⃗′))]

⎤
⎥
⎥
⎥
⎦

= nEv⃗←ER2
t
[δj(φ

M
j (v⃗′))] .

Here, the first line is just a rearrangement, the second line holds because as r →∞, sj concentrates around
the type that is “close” to rj , which is r′j [RW15], the third line follows from the definition of expectation
over replicas as we take r → ∞, and the last line follows by linearity of expectation since the n buyers are
i.i.d. (and is just written with respect to some bidder j).

Since values are additive and the items are i.i.d., we have

Ev⃗←ER2
t
[δj(φ

M
j (v⃗′))] = Ev⃗←ER2

t
[(v⃗ − v⃗′) ⋅ φMj (v⃗′)]

= ∫

t

v1=1
∫

t

v2=1
(v⃗ − v⃗′) ⋅ φMj (v′1, v

′

2)P(v1, v2)dv1dv2

= 2∫
t

v1=1
∫

t

v2=1
(v1 − v

′

1)φ1(v
′

1, v
′

2)
1

v21v
2
2

dv1dv2,

where φ1(v⃗) now denotes the probability that a bidder wins item 1 when bidding v⃗′ in mechanism M (the
solution output by RoaSolver). Now, note that v′ = xk for v ∈ [xk, xk+1) and that φ1(xk, x`) is just a
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constant, so we have

∫

xk+1

v1=xk
∫

x`+1

v2=x`

(v1 − v
′

1)φ1(v
′

1, v
′

2)
1

v21v
2
2

dv1dv2 = ∫
xk+1

v1=xk
∫

x`+1

v2=x`

(v1 − xk)φ1(xk, x`)
1

v21v
2
2

dv1dv2

= φ1(xk, x`)∫
xk+1

v1=xk
∫

x`+1

v2=x`

(
1

v1v22
−

xk
v21v

2
2

)dv1dv2

= φ1(xk, x`)∫
xk+1

v1=xk

(
1

v1x`
−

1

v1x`+1
)dv1

= φ1(xk, x`) (
1

x`
−

1

x`+1
) log

xk+1
xk

.

Finally, summing over 1 ≤ k, ` < s gives the desired integral. Putting everything together, we get

E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φj(sj))

⎤
⎥
⎥
⎥
⎥
⎦

= 2n
s−1

∑
k=1

s−1

∑
`=1

φ1(xk, x`) (
1

x`
−

1

x`+1
) log

xk+1
xk

,

and the result follows from observing that Revn(ER
2
t,d) = RevMn (ER

2
t,d) since RoaSolver computes the

optimal auction, and also Revn(ER
2
t ) ≥ RevM

′

n (ER
2
t ).

Unfortunately, for the discretizations we tested, the lower bound obtained by optimizing over ε ∈ (0,1) for
every n did not improve upon the logn/20 lower bound. Discretizations with an extremely high point in the
support (such as in Table 5) gave strictly negative lower bounds on Revn(ER

2
t ), while discretizations without

an extremely high point (such as the initial discretization, Table 1) gave a lower bound of approximately 0.
This can be understood by observing that the error term in Lemma 15 is multiplied by a factor of 1

ε
, so in

order to obtain meaningful bounds, we need the error term to be very small. But recall that the error term
is essentially a function of the expected difference between ER2

t and ER2
t,d, so we need the discretization to

match the continuous distribution very closely. So far, this does not seem feasible with a support size of
only s = 14. But if we are able to bypass the limitation imposed by RoaSolver’s runtime and perform these
experiments with a much finer discretization, this framework may be able to provide a more meaningful
lower bound on Revn(ER

2
t ), and consequently on ARevn(ER

2
).

Nevertheless, we pressed ahead with applying Theorem 14 to also formulate an upper bound on Revn(ER
2
t ).

The key observation is that stochastic dominance is not used in the reduction at all (it is only required for
later results in [RW15]), so we can simply reverse the roles of ER2

t,d and ER2
t as D+ and D.

Lemma 16 (Upper bound on Revn(ER
2
t )). Let ERt,d have support {x1 = 1, x2, . . . , xs = t}. Then for any

ε ∈ (0,1), we have

Revn(ER
2
t ) ≤

1

1 − ε
Revn(ER

2
t,d) +

2n

ε

s−1

∑
k=1

s−1

∑
`=1

(
1

x`
−

1

x`+1
) log

xk+1
xk

.

Proof. Now, M is the optimal mechanism for buyers from ER2
t and M ′ is the mechanism obtained from

the reduction, for buyers from ER2
t,d. Then RevMn (ER

2
t ) = Revn(ER

2
t ) and RevM

′

n (ER
2
t,d) ≤ Revn(ER

2
t,d)
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(which we recall is the revenue of the solution output by RoaSolver), so we have

RevM
′

n (ER
2
t,d) ≥ (1 − ε)

⎛

⎝
RevMn (ER

2
t ) −

1

ε
E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

Revn(ER
2
t,d) ≥ (1 − ε)

⎛

⎝
Revn(ER

2
t ) −

1

ε
E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

Revn(ER
2
t ) ≤

1

1 − ε
Revn(ER

2
t,d) +

1

ε
E
⎡
⎢
⎢
⎢
⎢
⎣

1

r
∑
j

∑
rj

δj(φ
M
j (sj))

⎤
⎥
⎥
⎥
⎥
⎦

.

Unfortunately, we now do not have an explicit allocation φM since we do not know the optimal mechanism
for M , and the best we can do is use the bound φ1(v⃗) ≤ 1. Using this bound and following calculations in
the same style as Lemma 15 furnishes the desired result.

Again, the discretizations we experimented with resulted in linear upper bounds for ARevn(ER
2
), therefore

not improving upon the currently known 9
√

2n upper bound. However, we remain hopeful that a finer
discretization will allow success of this framework in proving tighter bounds.

5 Symmetries

This section closely follows the main ideas from [DW11], with special attention paid to the fact that in our
particular setting, we have both item and bidder symmetries. In general, it is known that we can write a
revenue-optimizing linear program of size polynomial in ∣supp(D)∣ (see [DW11], Appendix B, for an explicit
specification of the full LP). However, supp(D) may be infinite, and when it is finite it is usually exponential
in both the number of bidders and the number of buyers (since we specify a value from the distribution for
each item, for every bidder).

We seek to use symmetries in the distribution D to reason about symmetries in the optimal mechanism
M , and use this to reduce the number of variables needed to fully describe the structure of M in the LP.
Then, with a smaller LP, we will be able to run RoaSolver with finer discretizations and hopefully utilize the
framework from Section 4 to prove tighter bounds. We begin with some relevant definitions and notation.

5.1 Preliminaries and notation

Recall that the seller has m items and faces n buyers. Denote by vij bidder i’s value for item j, so that
v⃗i ∶= (vij)j∈[m]

is bidder i’s type, and v⃗ = (v⃗i)i∈[n] = (vij)i∈[n],j∈[m]
is the complete bidder profile. Let πij(v⃗i)

be the interim probability that bidder i of type v⃗i is awarded item j, qi(v⃗i) be the expected price charged
to bidder i of type v⃗i, and U(v⃗i,Mi(w⃗)) be the utility of a bidder with type v⃗i for the expected outcome
Mi(w⃗).

Denote by Sn, Sm the symmetric groups over the sets [n] ∶= {1,⋯, n} and [m] ∶= {1, . . . ,m} respectively, and
for σ = (σ1, σ2) ∈ Sn × Sm, assume that σ maps (i, j) ∈ [n] × [m] to σ(i, j) ∶= (σ1(i), σ2(j)). For a complete
bidder profile v⃗, we define σ(v⃗) to be the value vector w⃗ such that wσ(i,j) = vi,j for all i, j. For a value
distribution D, we define σ(D) to be the distribution that first draws v⃗ from D and then outputs σ(v⃗).
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We can also formally define the notion of symmetries for distributions and mechanisms.

Definition 17 (Symmetry in a distribution). We say that a distribution D has symmetry σ ∈ Sn × Sm if,
for all v⃗ ∈ Rn×m, PD(v⃗) = PD(σ(v⃗)).

Definition 18 (Symmetry in a mechanism). We say that a mechanism M respects symmetry σ ∈ Sn × Sm
if, for all v⃗ ∈ Rn×m, M(σ(v⃗)) = σ(M(v⃗)).

Definition 19 (Permutation of a mechanism). For any permutation σ ∈ Sn × Sm and any mechanism M ,
define σ(M), the permutation of M , as [σ(M)](v⃗) = σ(M(σ−1(v⃗))).

5.2 Existence of an optimal symmetric mechanism

Our key result is an analog of Nash’s theorem for symmetric games, defined for randomized mechanisms.
Informally, we show that every symmetric distribution D has a symmetric BIC optimal mechanism M ,
corresponding to a symmetric Bayes-Nash equilibrium in which every bidder reports their true value.

Theorem 20. For all D, any BIC mechanism M can be symmetrized into a BIC mechanism M ′ such that

for all σ ∈ Sn × Sm, if D has symmetry σ, then M ′ respects σ, and RevM(D) = RevM
′

(D).

We break the proof into three smaller lemmas.

Lemma 21. If M is a BIC mechanism, then for any σ ∈ Sn × Sm that D has, the mechanism σ(M) is also

BIC, and RevM(D) = Revσ(M)
(D).

Proof of Lemma 21. Observe that by definition of σ(M), on input v⃗ (a complete bidder profile), bidder i is
allocated the permutation σ of the lottery offered to bidder σ−1(i) by M on input σ−1(v⃗), and charged the
price charged to bidder σ−1(i) by M on input σ−1(v⃗). Then, for all i, v⃗i, we have

Ev⃗−i∼D−i [U(v⃗i, [σ(M)]i(v⃗))] = Ev⃗−i∼D−i [U(σ−1(v⃗i),Mσ−1(i)(σ
−1

(v⃗)))] .

Since M is BIC, we also have, for all v⃗i, w⃗i,

Ev⃗−i∼D−i [U(σ−1(v⃗i),Mσ−1(i)(σ
−1

(v⃗)))] ≥ Ev⃗−i∼D−i [U(σ−1(v⃗i),Mσ−1(i)(σ
−1

(w⃗i; v⃗−i)))]

= Ev⃗−i∼D−i [U(v⃗i, [σ(M)]i(w⃗i; v⃗−i))] .

Putting these together, we see that

Ev⃗−i∼D−i [U(v⃗i, [σ(M)]i(v⃗))] ≥ Ev⃗−i∼D−i [U(v⃗i, [σ(M)]i(w⃗i; v⃗−i))]

for all i, v⃗i, w⃗i, so σ(M) is BIC.

Now, since all bidders in σ(M) play truthfully, the expected revenue of σ(M) on complete bidder profile v⃗
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is exactly RevM(σ−1(v⃗)), so we can compute

Revσ(M)
(D) = Ev⃗∈supp(D) [RevM(σ−1(v⃗))]

= ∑
v⃗∈supp(D)

RevM(σ−1(v⃗)) ⋅ PD(v⃗)

= ∑
v⃗∈supp(D)

RevM(σ−1(v⃗)) ⋅ PD(σ−1(v⃗))

= ∑
σ−1(v⃗)∈supp(D)

RevM(v⃗) ⋅ PD(v⃗)

= ∑
v⃗∈supp(D)

RevM(v⃗) ⋅ PD(v⃗)

= RevM(D),

where we moved from the second to the third line using the definition of symmetry in a distribution, and
from the fourth to the fifth line using the fact that permutations are bijective mappings.

Lemma 22. Let G denote any distribution over elements of Sn × Sm. For a BIC mechanism M , let G(M)

denote the randomized mechanism that samples an element σ from G and then uses the mechanism σ(M).
Then, for all G, G(M) is BIC. Further, if G samples only σ such that D has symmetry σ, then RevM(D) =

RevG(M)
(D).

Proof of Lemma 22. By Lemma 21, each σ(M) is a BIC mechanism, so randomly sampling from a set of
BIC mechanisms also results in a BIC mechanism (a bidder cannot possibly improve their utility in any
outcome by deviating from reporting their true value), proving the first part of the lemma. For the second
part, we can compute

RevG(M)
(D) = ∑

σ∈supp(G)

Revσ(M)
(D) ⋅ PG(σ)

= ∑
σ∈supp(G)

RevM(D) ⋅ PG(σ)

= RevM(D) ∑
σ∈supp(G)

PG(σ)

= RevM(D),

where we moved from the second line to the third line by a direct application of Lemma 21.

Lemma 23. Let G sample a permutation uniformly at random from a subgroup S of Sn × Sm. Then G(M)

respects every permutation in S.

Proof of Lemma 23. For any v⃗, by definition we have G(M)(v⃗) = 1
∣S∣ ∑ρ∈S ρ(M(ρ−1(v⃗))). Now, since S is a

subgroup (and thus closed under multiplication and inverses), for any σ ∈ S, we have
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G(M)(σ(v⃗)) =
1

∣S∣
∑
σρ∈S

(σρ)(M((σρ)−1(σ(v⃗))))

=
1

∣S∣
∑
ρ∈S

σρ(M(ρ−1(v⃗)))

= σ
⎛

⎝

1

∣S∣
∑
ρ∈S

ρ(M(ρ−1(v⃗)))
⎞

⎠

= σ(G(M))(v⃗).

That is, G(M) respects every σ ∈ S.

Proof of Theorem 20. If D has symmetries σ and τ , then applying the definition of symmetry twice gives

PD(στ(v⃗)) = PD(τ(v⃗)) = PD(v⃗),

so D has symmetry στ . Also, applying the definition of symmetry using vector σ−1(v⃗) gives

PD(σ−1(v⃗)) = PD(v⃗),

so D also has symmetry σ−1. Thus the set of symmetries of D is a subgroup, and we can apply the three
lemmas to obtain a symmetric BIC mechanism M ′ that respects all symmetries of D and obtains the same
revenue as M .

In our setting, the bidders are i.i.d., so there exists a BIC revenue-optimal mechanism with πij(v⃗) = πi′j(v⃗)
for all bidders i, i′, bidder types v⃗i = v⃗i

′
= v⃗, and items j. In other words, any two bidders who report the same

type receive the same allocation, so in the symmetric LP we only need to keep track of allocation and price
variables for bidder 1 rather than for all n bidders. Additionally, the items are i.i.d., so πij(v⃗i) = πiσ(j)(σ(v⃗i))
for all bidders i, items j, and item permutations σ ∈ Sm. In other words, relabeling the items according to
permutation σ does not change the optimal mechanism.

5.3 Strong monotonicity of a BIC mechanism

Theorem 24. If D is item-symmetric, then every item-symmetric BIC mechanism is strongly monotone:

for all bidders i and items j, j′: vij ≥ vij′ Ô⇒ πij(v⃗i) ≥ πij′(v⃗i).

Proof. Suppose for the sake of contradiction that M is item-symmetric and BIC but not strongly monotone.
Then there exists some bidder type v⃗i

∗ and items j ≠ j′ such that

v∗ij < v
∗

ij′ , πij(v⃗i
∗
) > πij′(v⃗i

∗
).

Let σ denote the transposition (jj′) ∈ Sn. By item symmetry of D, for complete bidder profiles w⃗, we have
P(w⃗∣w⃗i = v⃗i

∗
) = P(σ(w⃗)∣w⃗i = σ(v⃗i

∗
)). By item symmetry of M , we have M(σ(w⃗)) = σ(M(w⃗)) for all w⃗.

Putting these together, we have

πij(v⃗i
∗
) = πij′(σ(v⃗i

∗
)), πij′(v⃗i

∗
) = πij(σ(v⃗i

∗
)).
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Then, if bidder i reports σ(v⃗i
∗
) instead of v⃗i

∗, their value for their allocation changes by

(πij(σ(v⃗i
∗
))v∗ij + πij′(σ(v⃗i

∗
))v∗ij′) − (πij(v⃗i

∗
)v∗ij + πij′(v⃗i

∗
)v∗ij′)

= πij′(v⃗i
∗
)v∗ij + πij(v⃗i

∗
)v∗ij′ − πij(v⃗i

∗
)v∗ij − πij′(v⃗i

∗
)v∗ij′

= (πij(v⃗i
∗
) − πij′(v⃗i

∗
)) (v∗ij′ − v

∗

ij)

> 0.

That is, bidder i strictly increases their expected value (and pays the same price), so their expected utility
strictly increases by misreporting. However, this contradicts the fact that M is BIC.

That is, if bidder i likes item j more than item j′, their expected probability of getting item j is higher.
This is a useful property for simplifying the LP because it implies that a bidder of type v⃗i with vij ≥ vij′ has
no incentive to misreport any w⃗i with wij < wij′ . For the two-item setting, this means that if vi1 > vi2, we
only need to consider BIC constraints for bidder types w⃗i with wi1 ≥ wi2.

5.4 Symmetric LP formulation

The bidder symmetry optimization has already been implemented in RoaSolver, but the item symmetry
optimization has not yet been implemented because detecting item symmetry in the general case is not a
simple problem [Shu19]. For our particular setting, we have added the command-line execution flag -sym to
ensure symmetric output, but this implementation starts from the longer LP (utilizing reduced forms and
bidder symmetry, but not item symmetry) and adds equality constraints to enforce symmetry, rather than
formulating the fully symmetric LP with fewer variables and constraints. Implementing the symmetric LP
(both in our particular setting, and in the general case) is a possible direction for future development.

Here, we explicitly formulate the symmetric LP for two symmetric items and n bidders. We build upon
[DW11] by also formulating the symmetric LP using reduced forms, which further reduces the size of the
LP. Since the bidders are i.i.d., we drop the subscript i when referring to the allocation given to or price
charged to a bidder when reporting type v⃗i. Finally, let E denote the subset of bidder types where item 1
is the favorite item; that is, E ∶= {v⃗ ∈ ER2

t,d ∣ v1 ≥ v2}, and s be the size of the support of the discretization

ERt,d. Note that ∣E∣ = (
s
2
) + s = s(s+1)

2
.

The value in parentheses at the end of each line is an upper bound on the number of such variables/constraints.

Variables:

� π1(v⃗), for all v⃗ ∈ E: the expected probability (over all other bidders bidding their true types) that a
bidder gets item 1 when reporting type v⃗ (∣E∣).

� π2(v⃗), for all v⃗ ∈ E: the expected probability (over all other bidders bidding their true types) that a
bidder gets item 2 when reporting type v⃗ (∣E∣).

� q(v⃗), for all v⃗ ∈ E: the price paid by a bidder when reporting type v⃗ (∣E∣).

Constraints:

� 0 ≤ πj(v⃗) ≤ 1, for all v⃗ ∈ E, j ∈ {1,2}: valid probabilities (4∣E∣).
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� v1π1(v⃗) + v2π2(v⃗) − q(v⃗) ≥ 0, for all v⃗ = (v1, v2) ∈ E: ex-interim IR (∣E∣).

� v1π1(v⃗) + v2π2(v⃗) − q(v⃗) ≥ v1π1(v⃗
′) + v2π2(v⃗

′) − q(v⃗′), for all v⃗, v⃗′ ∈ E: BIC (∣E∣2).

� π1(v⃗) ≥ π2(v⃗), for all v⃗ ∈ E: strong monotonicity (∣E∣).

Separation oracle:

S, so that if interim allocation rule π satisfies all other constraints and S(π) = `, we add the broken constraint
` to the linear program and iterate. The separation oracle S ensures that π is feasible; that is, that there is
an ex-post allocation rule inducing π.

Using Border’s theorem, [CDW17] shows that feasibility holds if and only if all the Border constraints are
satisfied. We now reformulate the Border constraints using the smaller set of symmetric variables in our LP.
First define the sets

Sj(x) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

v⃗ ∈ ER2
t,d

RRRRRRRRRRRRRRRRRRRR

πj(v⃗) ∑
v⃗′∈ER2

t,d

πj(v⃗)≥πj(v⃗
′
)

P(v⃗′) ≥ x

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

for all items j ∈ {1,2}, as a function of x ∈ R. Then, for all x ∈ R, we require

n ∑
v⃗∈Sj(x)

πj(v⃗) ⋅ PER2
t,d

(v⃗) ≤ 1 −
⎛

⎝
1 − ∑

v⃗∈Sj(x)

P
ER

2
t,d

(v⃗)
⎞

⎠

n

,

where the left hand side represents the expected probability that item j is awarded to a bidder with type in
Sj(x), and the right hand side represents the probability that at least one of the n bidders has type in Sj(x)
(when phrased in this way, it is clear that all the Border constraints must be satisfied for feasibility to hold,
but Border’s theorem states that satisfying all the Border constraints is also sufficient for feasibility).

We now exploit item symmetry by observing that if v⃗ = (v1, v2) ∉ E, then σ(v⃗) = (v2, v1) ∈ E, and

πj(v⃗) = πj′(σ(v⃗), P
ER

2
t,d

(v⃗) = P
ER

2
t,d

(σ(v⃗),

so we can write all the Border constraints using only the variables for v⃗ ∈ E.

Further, note that by the discrete nature of the sets Sj(x), it suffices to check the Border constraints only
for the threshold values of x in the set

Xj =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

πj(v⃗) ∑
v⃗′∈ER2

t,d

πj(v⃗)≥πj(v⃗
′
)

P(v⃗′)

RRRRRRRRRRRRRRRRRRRR

v⃗ ∈ ER2
t,d

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

.

For every j, ∣Xj ∣ ≤ s. Finally, the mechanism is symmetric, so we only need to run the separation oracle for
item 1. Thus the separation oracle adds at most s constraints to the LP.

Objective:

max n ⋅ ∑
v⃗∈E

P( ⋃
σ∈S2

σ(v⃗)) ⋅ q(v⃗)

Putting everything together, we have a revenue-optimizing LP in size polynomial in ∣E∣, which is an im-
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provement on the current RoaSolver LP of size polynomial in ∣supp(ERt,d)∣
2. Since ∣E∣ ≈ s2

2
, implementing

this symmetric LP can improve the runtime of RoaSolver by at least a factor of 2.

6 Conclusions

In summary, the gap between the logarithmic and square root dependency of the competition complexity on
n remains challenging to close. Our simulations using discretizations of the equal revenue distribution give
us a fair amount of confidence that the competition complexity is Θ(logn), but we do recognize that our
simulations are limited by the (in)accuracy of discretizing. Taking this difference into account, we have found
explicit upper and lower bounds on the (continuous) competition complexity as a function of the (discrete)
optimal revenue computed by RoaSolver. Although this did not improve upon the currently known bounds
on competition complexity for the discretizations we tested, this overall framework can ideally applied to
finer discretizations to prove tighter bounds.

One way to enable the use of finer discretizations is to optimize the runtime of RoaSolver to allow for larger
support sizes. This can be done by exploiting item and bidder symmetries to reduce the size of the LP
representing the mechanism. We have formulated the fully symmetric LP and separation oracle here, but
have not yet implemented the detection and use of item symmetries in the RoaSolver codebase; this is a
possible area for future development.

Presuming that the competition complexity is indeed Θ(logn), yet another possible approach relies on the
direct construction of an approximately-optimal mechanism from an optimal mechanism for bidders from
ER

2. Informally, an outline of the reduction provided by [KMS+19] is:

(1) Ignore buyers with two high values (above some cutoff H).

(2) Simplify expensive menu options costing at least E > 2H (possibly higher), noting that a buyer must
have at least one high value to purchase an expensive option.

(3) Trim the inexpensive options to reduce menu complexity while preserving supremum probability p of
awarding each item.

We seek to lose only an additive O(
logn
n

) fraction of revenue per bidder in each step of the reduction. Then,
we can interpret the resulting mechanism M ′ as allocating a p fraction of each item to buyers with two low
values (and optimizing revenue over this), and then just selling separately the remaining 1 − p fraction of
each item (which will end up getting purchased by the buyers with one high value) to get revenue 2n(1− p).
If we can show that M ′ still achieves total expected revenue 2n, then we will be able to conclude that
ARevn(ER

2
) = O(logn), thus furnishing the desired logarithmic upper bound on competition complexity.
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