
Theoretical Insights into Contrastive
Unsupervised Representation Learning

Student: Hrishikesh Khandeparkar
Advisor: Prof. Sanjeev Arora

April 2019

Abstract

Unsupervised Representation Learning has had a tremendous im-
pact in several domains like computer vision and natural language
processing (NLP). Contrastive unsupervised methods to learn repre-
sentations of data points have led to a simplification of downstream
classification tasks which use these representations. However, a theo-
retical understanding of when these methods will succeed is lacking.
In this report, we use the framework presented in [Arora et al., 2019] to
guide the construction of better training objectives which we further
test with experiments. Furthermore, we highlight the limitations of
unsupervised learning in the form of counter examples showing when
unsupervised learning is doomed to fail. We verify our results by
conducting experiments on commonly used function classes for classi-
fication in the domains of computer vision.

1 Introduction

Machine Learning as a field of research has had a tremendous impact on
several applications of practical interest lately. Supervised learning – learning
to classify using labeled samples – has become a staple task in domains like
computer vision and natural language processing. While supervised learning
is well studied empirically [Caruana and Niculescu-Mizil, 2006] as well as
theoretically [Valiant, 1984], its counterpart, unsupervised learning, is much
less understood. Unsupervised representation learning in particular, which

1

has enjoyed empirical success recently [Mikolov et al., 2013, Wang and Gupta,
2015], lacks the theoretical grounding that supervised learning enjoys.

In this report, we consider a particular paradigm of unsupervised learn-
ing which we refer to as contrastive unsupervised representation learning
(CURL). Contrastive methods are in essence similar to word2vec Mikolov
et al. [2013], a method used to learn low dimensional vector representa-
tions for words. These methods share a common feature – they assume
access to unlabelled pairs of points x, x+ that are drawn from a distribution
Dsim(x, x+) of semantically similar pairs of points. Along with this, these
methods also use access to a negative sample x− drawn from a distribution
Dneg(x−). It is presumed that x− is dissimilar from x, x+. Given this, con-
trastive methods optimize the following loss function

L(f) = E
x,x+∼Dsim

x−∼Dneg

[
− log

(
ef(x)T f(x+)

ef(x)T f(x+) + ef(x)T f(x−)

)]

Concretely, the problem resolves to finding a function f ∗ = arg minf∈F L(f)
where F is a class of representation functions. A priori, it is not clear why
optimizing this loss function should lead to good representations for down-
stream tasks. In fact, it is not even clear whether this method should al-
ways work or if there are conditions on distributions that can lead it to fail.
Consequently, despite being similar in flavor to several other paradigms like
multitask learning and similarity learning, [Bellet et al., 2012, Maurer et al.,
2016] contrastive learning lacks a theoretical understanding.

In this report, we use the framework of [Arora et al., 2019] to resolve two
questions. First, we highlight instances where contrastive unsupervised learn-
ing can, in fact, fail to recover a ‘good’ representation function. In particular
we show that increasing the number of negative samples can lead to the
algorithm picking suboptimal representations – this is contrary to empirical
evidence that increasing negative samples indeed should help. Understanding
these instances leads us to insights into what possible conditions might hold
for real world distributions for Dsim,Dneg. Second, we use a simple insight to
provide an objective function that is a tighter guarantee of performance (in
a formal sense) when one has access to blocks of similar data. We support
both our findings with experiments in the domain of computer vision using
widely used representation function classes F . We hope that such insights
can guide future theoretical work to make the correct assumptions about

2

real-world distributions as well guide the design of principled objectives for
unsupervised learning.

The report is organized as follows. In Section 2 we present the theoret-
ical framework of Arora et al. [2019]. In Section 3 we present the generic
contrastive unsupervised representation learning algorithm. In Section 4 we
describe insights that one can derive from the framework and highlight our
main results. Section 5 presents our experimental work to verify the results
on real world function classes of interest. Finally, we conclude in Section 6
with summary of our work and point towards further research directions.

2 A Theoretical Framework

We now proceed to describe the theoretical framework presented in Arora
et al. [2019]. Let X be the set of all input data points. Let F be a class
of representation functions f such that every f : X → Rd and ||f(·)|| ≤ R
for some R > 0. Recall from the introduction that contrastive unsupervised
representation learning assumes access to two distributions:

i) Dsim(x, x+), a distribution over pairs of semantically similar points

ii) Dneg(x
−) a distribution over negative samples that are random.

Latent Classes and Semantic Similarity

To formalize the notion of semantic similarity Arora et al. [2019] introduce
the concept of latent classes. This notion will be used to define the structure
of Dsim as well as the supervised tasks of interest.

Definition 2.1 (Latent Classes). Let C denote the set of all latent classes.
Associated with each class c ∈ C is a distribution Dc over X . There exists a
distribution ρ over C that characterizes how likely a class is to appear in the
unlabelled data.

Dc(x) roughly captures how related x is to class c. For example if X is
the set of plausible natural images, Ddog(x) would assign high probability to
all images x that are pictures of dogs, and low probability to other images.

A distribution ρ is assumed over classes in order to define a notion of
unlabelled data. Thus, ρ characterizes how likely samples from these classes
are to appear in unlabelled data. Now we can formalize the structure of
Dsim,Dneg.

3

Definition 2.2 (Semantic Similarity). Semantically similar points are points
drawn i.i.d from a random class c ∼ ρ(c). The distribution of negative sam-
ples is the marginal of the distribution over semantically similar pairs. For-
mally:

Dsim(x, x+) = E
x∼ρ

[Dc(x)Dc(x
+)] (1)

Dneg(x−) = E
c∼ρ

[Dc(x
−)] (2)

This definition of Dsim is plausible because the class distributions are al-
lowed to overlap arbitrarily. Assuming the structure of Dsim lets us formalize
a notion of classification tasks of interest.

Supervised Tasks

To define a notion of downstream classification tasks we restrict ourselves to
binary classification tasks. Thus, a 2-way task T consists of a pair of classes
{c1, c2} ⊆ C. The labelled dataset is simply i.i.d. draws from each of these
classes.

Definition 2.3 (Supervised Task). A supervised tasks consists of two classes
{c1, c2} with c1 6= c2 and 2m labelled samples. m samples are i.i.d draws from
Dc1 and labelled as c1 and similarly for c2.

The key idea in this definition is that the Dc which defines how unlabelled
samples appear from a class is the same as that of the distribution of labelled
points in classification tasks that involveDc. This lets us connect downstream
tasks to the distribution of unlabelled data.

Evaluation Metric for Representations

In order to define a notion of performance on downstream tasks of interest,
we now proceed to define how representations are used in downstream tasks.
Let the task be T = {c1, c2}. Then, a classifier for T is a function g : X : R2

whose output coordinates are indexed by the classes c1, c2 in T .
The supervised loss of a classifier on a labelled sample (x, c1) ∈ (X , T)

(and analogously for c2) is given by `({g(x)c1−g(x)c2}) where `(z) = log2(1+
exp(−z)) is either the logistic loss function or `(z) = max{0, 1 − z} is the
hinge loss function. Thus, the supervised loss of the classifier function g is
defined as

4

Definition 2.4 (Supervised Loss of Classifier). The supervised loss of a clas-
sifier g on task T is given by Lsup(T , g) where

Lsup(T , g) = E
c∼U({c1,c2})

E
x∼Dc

[`(g(x)c − g(x)c′)]

Here U(·) is the uniform distribution over the set and c′ = T /c.

We note that the loss function ` will be used in its more general form when
used in unsupervised learning with k negative samples. In particular, let ` :
Rk → R be given as a function on a k dimensional vector as `(z) = `({zi}ki=1)
where `(z) = log2(1 +

∑
i exp (−zi)) or `(z) = max{0, 1 + maxi−zi}.

Now, in order to use a representation function f : X → Rd to create a
classification function we restrict ourselves to the setting of linear classifi-
cation. Thus, a matrix W ∈ R2×d is trained and g(x) = Wf(x) is used to
evaluate the loss. The problem of finding the best W given a fixed f is just
the vanilla linear classification task, so we define the notion of performance of
the representation function f on a task as the performance of the best linear
classifier.

Definition 2.5 (Supervised Performance). The performance of a represen-
tation function f : X → Rd on a classification task T is given by

Lsup(T , f) = inf
W∈R2×d

Lsup(T ,Wf)

Finally, the key idea in considering an evaluation metric is to consider
the average performance of the representation function over all binary tasks.
The distribution ρ lends itself naturally to this definition

Definition 2.6 (Average Supervised Performance). The average supervised
performance of a representation function f is defined as

Lsup(f) = E
c1,c2∼ρ2

[Lsup({c1, c2}, f)|c1 6= c2]

The key idea in Arora et al. [2019] involves using contrastive unsupervised
loss Lun(f) (defined in Section 3) to bound Lsup(f) – the performance of the
representation function learned by the unsupervised algorithm on the average
binary task.

Remark. We note that the performance on the average binary task is hard
to relate to the performance on the all-way task in cases where C is a finite
set.

5

3 Unsupervised Representation Learning

We now proceed to describe the contrastive unsupervised representation
learning algorithm. In order to learn a good representation function using
unlabelled data we define the unsupervised loss function.

Definition 3.1 (Unsupervised Loss). The unsupervised loss Lun(f) with k
negative samples of a representation function f is given by

Lun(f) = E
(x,x+)∼Dsim

x−1 ,..x
−
k ∼Dneg

[
`
(
{f(xT)

(
f(x+)− f(x−i)

)
}ki=1

)]
and its emprical loss L̂un(f) is given by

L̂un(f) =
1

M

M∑
i=1

`
(
{f(xTi)

(
f(x+

i)− f(x−ij)
)
}ki=1

)
where the M samples are tuples of (xi, x

+
i , x

−
i1, ..x

−
ik) similar pairs and k neg-

ative samples.

Finally, the unsupervised algorithm to learn a representation function is
simply to find the best f̂ ∈ arg minf∈F(L̂un(f)) that minimizes the empirical
unsupervised loss. For the sake of this paper, we will ignore issues of gener-
alization of the empirical unsupervised loss. For a more thorough treatment
of the generalization error of the unsupervised loss, see Arora et al. [2019].

4 Algorithmic Insights

In the following section, we present our main results. First we explain how
under the minimal assumptions in [Arora et al., 2019], excessive negative
sampling can be detrimental. Then, we present a slightly modified loss func-
tion for learning when one has acess to blocks of semantically similar data.
We support these insights with experiments in the Section 5.

4.1 The Negative Effects of Excessive Negative Sam-
pling

Recall that the unsupervised loss function (3.1) with k negative samples is
given by

Lun(f) = E
[
`({f(x)T (f(x+)− f(x−i))}ki=1)

]
6

where x, x+ ∼ Dsim(x, x+) and x−i are i.i.d. draws from Dneg(x
−). Empir-

ically, it is widely believed that increasing the number of negative samples
always helps in learning better objective functions. In fact, in Noise Con-
trastive Estimation (NCE) [Gutmann and Hyvärinen, 2010] which is consid-
ered a theoretical justification, increasing the number of negative samples
helps provably by improving the asymptotic variance of the learned param-
eters. Contrary to this, we show that this phenomenon does not hold for
contrastive learning. In fact, increasing the number of negative samples can
hurt. The following Lemma formalizes this.

Lemma 4.1. There exists a function class F , and distributions Dc for c ∈ C
such that F contains an optimal representation f ∗ for classification tasks
defined using Dc yet f ∗ 6= arg minf∈F Lun(f) when the number of negative
samples k = Ω(|C|). Consequently, unsupervised learning can find a subopti-
mal representation function.

Proof. Let C = {ci}ni=1 and let Dci(x) be uniform over the set {x1
i , x

2
i }.

Namely, each class distribution Dc is effectively a distribution over a pair of
points. Let F = {f0, f1} where f0(x) = 0 for all x ∈ X and f1(x1

i) = 3/2rei,
f1(x2

i) = 1/2rei where ei denote the standard basis vectors in Rn. Finally,
let ρ be uniform over C.

Firstly, note that f1 can perfectly separate all pairs of classes {ci, cj} using
the classifier ei−ej and thus has Lsup(f1) = 0. On the other hand, f0 trivially
has loss Lsup(f0) = 1. However, consider the case where the number of
negative samples k = Ω(|C|). This means that there is a constant probability
that ∃i, c−i = c+. Furthermore, given this, with constant probability, x, x+ =
x2
i and x− = x1

i . In this case,

Lun(f1) = Ω
(
log
(
1 + e1/2rei(3/2rei−1/2rei)

))
≈ Ω(log(1 + eΩ(r2))) = Ω(r2)

On the other hand, the Lun(f0) = O(1). Therefore, arg minf∈F Lun(f) =
f0 6= f1 despite having Lsup(f1) = 0 and Lsup(f0) = 1 and so the unsupervised
algorithm will pick the suboptimal representation.

Naively, one might think that the problem happens because k = Ω(|C|)
and so it is inevitable that points from the same class will occur both as
positive samples and negative samples. The next example shows that even

7

when k = o(|C|), the same phenomenon can occur. The example is essentially
an extension of Lemma 4.1 done to promote collision of points that lead to
high unsupervised loss.

Lemma 4.2. The statement of Lemma 4.1 holds in the case when k = o(|C|)

Proof. Let C = {cij}ni,j=0 such that |C| = n2. Let each class cij be uniform
over the set {x1

ij, x
2
ij} and thus |X | = 2n2. As in Lemma 4.1, let F = {f0, f1}

with f0 = 0 and f1(x1
ij) = 3/2rei, f1(x2

ij) = 1/2rei. Thus, f1 ‘clusters’ the
n2 classes into n clusters.

Note that again, Lsup(f0) = 1 on the average 2-way task and Lsup(f1) =
1/n = o(1) because the classification problem will consist of two classes
from the same cluster only with probability 1/n. Now, when k = o(n), the
probability of having a class in the negative samples be the same as the class
of the positive samples is 1− (1− 1/n)k and so Lun(f1) = o(1) < Lun(f0) =
Ω(1). However, consider when k = Ω(n). Then, with constant probability
a class c−i from the same cluster as c+ will be picked as a negative sample.
Again, as above, Lun(f1) = Ω(r2) while Lun(f0) = O(1). This means that
the algorithm will pick f0 despite Lsup(f1) = o(1) < 1 = Lsup(f0)

Thus, we see that even when k = O(
√
|C|), the unsupervised algorithm

can pick suboptimal representations. The above example can easily be ex-
tended to the case when k = O(poly(|C|)) for any fractional power too.

Remark. Note that while the example in Lemma 4.1 seems rather artificial,
the example in Lemma 4.2 is plausible when the function class F is not very
expressive and clumps certain inputs from related classes together.

Furthermore, notice that the number of negative samples at which nega-
tive sampling can have a detrimental effect scales with the number of effective
clusters imposed by the function class F . This hints that while the distri-
butions Dsim,Dneg can inherently prevent the unsupervised loss from being
low, the function class being fit also plays a role.

Thus, we see that a large number of negative samples does not necessarily
help in contrastive learning. Consequently, the number of negative samples
to use becomes a hyper parameter to optimize over. In Section 5 we explore
how the choice of negative samples affects performance empirically.

8

4.2 Utilizing Blocks of Similar Data

A dataset can often contain blocks of similar data instead of just pairs. Here,
according to the framework, a block refers to b + 1 i.i.d. draws of points
x, x+

1 , ..x
+
b ∼ Dc(x) where c ∼ ρ. For instance, in natural language process-

ing, a paragraph of text can be seen as samples from the same class. For
computer vision, frames within a certain window in a video can be thought
of as samples from the same class too. How can one utilize this additional
structure in data?

To do so, we propose a slightly modified loss function: One that uses a
block x, x+

1 , ..x
+
b of iid samples from c+ ∼ ρ as a positive sample and a block

x−1 , ..x
−
b of iid samples from c− ∼ ρ as a negative sample.

Definition 4.1. The unsupervised block loss function is given by

Lblockun (f) = E
[
`

(
f(x)T

(∑
i f(x+

i)

b
−
∑

i f(x−i)

b

))]
This is reminiscent of the average of embeddings used in word2vec, where

blocks correspond to windows of consecutive words.
To understand why this loss function make sense, recall that the con-

nection between Lsup and Lun is made via applying Jensen’s inequality (see
[Arora et al., 2019]). Thus, the algorithm that uses the average of the pos-
itive and negative samples in blocks as a proxy for the classifier instead of
just one point each should have a strictly better bound owing to the Jensen’s
inequality getting tighter.

We formalize this intuition below. Let τ be the probability that the class
in the positive block and the negative block are the same. Then:

Lemma 4.3. ∀f ∈ F

Lsup(f) ≤ 1

1− τ
(
Lblockun (f)− τ

)
≤ 1

1− τ
(Lun(f)− τ)

This bound tells us that Lblockun is a better surrogate for Lsup, making it a
more attractive choice than Lun when larger blocks are available1.

1Note that we don’t compare the generalization error of the two loss functions.

9

Proof. By convexity of `,

`

(
f(x)T

(∑
i f(x+

i)

b
−
∑

i f(x−i)

b

))
= `

(
1

b

∑
i

f(x)T
(
f(x+

i)− f(x−i)
))

≤ 1

b

∑
i

`
(
f(x)T

(
f(x+

i)− f(x−i)
))

Thus,

Lblockun (f) = E
x,x+i
x−i

[
`

(
f(x)T

(∑
i f(x+

i)

b
−
∑

i f(x−i)

b

))]

≤ E
x,x+i
x−i

[
1

b

∑
i

`
(
f(x)T

(
f(x+

i)− f(x−i)
))]

= Lun(f)

The proof of the lower bound is analogous to that of Lemma 4.3 in [Arora
et al., 2019].

We verify the tightness of this bound by experimenting with this objective
using function classes of practical interest and find that minimizing Lblockun

instead of Lun can lead to better performance and our results are summarized
in Section 5.

5 Experiments

While the above theory applies generally, it ignores issues of optimization
over function classes as well as generalization. Thus, to emprically verify the
insights, we conduct experiments using function classes of practical interest
in computer vision to verify the above results. We now highlight the setup.

Toy Dataset

For our experiments, use the CIFAR-100 dataset [Krizhevsky and Hinton,
2009]. CIFAR-100 consists of 100 classes containing 600 images each. We

10

use a train test split of 500/100. Each image is a 32× 32 RGB image x such
that x ∈ [0, 255]3072. We use a standard normalization scheme to normalize
the pixel values around their means for all images. For training, we augment
the dataset by randomly flipping the image and randomly cropping a 32×32
sub-image from a padded version with a padding of 4. The test set is not
augmented. CIFAR-100 is a popular multiclass dataset used for training
neural networks on computer vision tasks.

Experiment Set Up

In order to create a toy unsupervise dataset, we recreate the settings of the
framework. Specifically, to generate pairs of similar points, we pick a class
uniformly at random from the 100 classes and then sample two pairs of images
from that class. For the function class F we use the VGG-16 architechture
[Simonyan and Zisserman, 2014]. We construct a representation function
class by taking away the final classification layer and instead adding a 522×
100 linear layer at the end to make 100 dimensional representations. VGG-16
is considered to be a standard baseline for classification on CIFAR-100. We
train the network on the unsupervised loss stochastic gradient descent.

Increasing Negative Samples

We study the effect of the number of negative samples. Figure 1 summarizes
our findings. We tested with k = 1, 2, 4, 10 along with M = 50, 250, 500, 1000
random samples per class. Note that when we use M samples per class
we effectively use M ∗ 100 unlabelled samples. The reason we sampled a
fixed number of samples from each class was to prevent lack of diversity of
unsupervised data for lower values of M .

11

200 400 600 800 1000
Unlabeled data

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

k=1
k=2
k=4
k=10

Figure 1: The effect on increasing negative samples

We find that increase in the number of negative samples leads to an
increase in accuracy at first, but can eventually be detrimental. We observe
such effects at k = 10 which is roughly

√
|C|. At this level, the probability

of collision is roughly 1/10 and the probability of having two of the same
classes as a negative sample is constant.

We note that this effect was expected when the number of negative sam-
ples increases to become comparable to the number of classes by Lemmas
4.1, 4.2. Negative results of this form are rare in empirical work and we hope
that study of the effect of increasing negative samples leads to future empir-
ical and theoretical work towards negative results. Table 1 presents the final
accuracies of trained models on the test set. We note importantly that the
accuracy is measured on representations of previously unseen images. This
hints towards the fact that the inductive bias of the function class plays a
role too (since the number of parameters in the net far exceed the number
of training samples).

Increasing Block Size

We now present our results on increasing the size of blocks. For this experi-
ment, we considered the set up with just 1 negative sample (as in Lemma 4.3.
Our results are summarized in Table 5. We find that increasing the block
size does lead to an increase in accuracy. For this particular experiment,
the accuracy was computed by training the best classifier on a small set of
labelled data.

We note that for the sake of this experiment, we maintained that the total

12

Data

Neg. Samples M = 50 M = 250 M = 500 M = 1000

k=1 72.84 86.18 84.30 88.02

k=2 74.59 80.37 86.33 91.51

k=4 76.51 81.19 86.99 91.97

k=10 77.00 83.67 86.64 88.01

Table 1: Effect of increase in negative samples with different amounts of
data

Block Size

Method b = 2 b = 5 b = 10

CURL 88.12 89.62 89.72

Table 2: Effect of increase in block size

amount of data used was constant. In particular, we ensured that b×M was
a constant accross all experiments. For this experiment we used 500 images
per class for total of 500000 randomly sampled unlabelled points. Further
experiments inspired by this insights were conducted in Arora et al. [2019]
in the domain of natural language processing. Arora et al. [2019] find an
increase in performance of the state-of-the-art sentence embeddings on the
IMDB Dataset.

6 Conclusion

Contrastive learning methods have been empirically successful at learning
useful feature representations. The framework of Arora et al. [2019] gives
fresh insights into what guarantees are possible and impossible, and shapes
the search for new assumptions to add to the framework that allow tighter
guarantees. The framework currently ignores issues of efficient minimization
of various loss functions, and instead studies the interrelationships of their
minimizers as well as sample complexity requirements for training to gen-
eralize. However, this report is unable to show a full generalization result

13

in the case of modified objective as in Lemme 4.3 which is left for future
work. While the insights from the framework are simple, one experiment on
sentence embeddings already illustrates how fresh insights derived from our
framework can lead to improvements upon state-of-the-art models in this ac-
tive area. We hope that further progress will follow, and that our theoretical
insights will begin to influence practice, including design of new heuristics to
identify semantically similar/dissimilar pairs.

References

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis,
and Nikunj Saunshi. A theoretical analysis of contrastive unsupervised
representation learning. arXiv preprint arXiv:1902.09229, 2019.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Similarity learn-
ing for provably accurate sparse linear classification. arXiv preprint
arXiv:1206.6476, 2012.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of
supervised learning algorithms. In Proceedings of the 23rd international
conference on Machine learning, pages 161–168. ACM, 2006.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 297–304, 2010.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The
benefit of multitask representation learning. The Journal of Machine
Learning Research, 17(1):2853–2884, 2016.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages 3111–
3119, 2013.

14

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

L. G. Valiant. A theory of the learnable. In Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, STOC ’84, pages 436–
445, New York, NY, USA, 1984. ACM. ISBN 0-89791-133-4. doi: 10.1145/
800057.808710. URL http://doi.acm.org/10.1145/800057.808710.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual repre-
sentations using videos. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2794–2802, 2015.

15

http://doi.acm.org/10.1145/800057.808710

	Introduction
	A Theoretical Framework
	Unsupervised Representation Learning
	Algorithmic Insights
	The Negative Effects of Excessive Negative Sampling
	Utilizing Blocks of Similar Data

	Experiments
	Conclusion

