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As the first strictly two-dimensional material ever discovered, graphene provides a veritable
playground of new physics, from the fractional quantum Hall effect (FQHE) ([8], [13]) to magic
angle superconductivity superconductivity ([2]). Because electrons in graphene behave like mass-
less Dirac fermions, graphene functions as a bridge between quantum field theory and condensed
matter. In terms of technological applications, graphene’s high Young’s modulus (≈ 1.0 TPa) and
intrinsic strength (130 GPa) suggest uses in construction and mechanical engineering, and strips
of graphene have been demonstrated to function as effective transistors ([9]).

Evidently, characterizing the physical properties of graphene is of interest to the scientific
community. In particular, the electronic applications and appearance of FQHE states in graphene
suggest that understanding graphene’s behavior under a magnetic field would be particularly
useful. When a magnetic field is applied to a graphene flake, the density of states formed
discretized levels called Landau levels.

A similar effect occurs under the application of a strain field ([4]). For a given amount of
strain, one can define a pseudomagnetic field that behaves similarly to a standard magnetic
field (with a defined vector potential) with two caveats. First, unlike a real magnetic field, a
pseudomagnetic field does not violate time-reversal symmetry. Secondly, a real magnetic field
exhibits gauge invariance, where the particular vector potential chosen is only unique up to the
addition of the gradient of a function (A → A + ∇ f without changing the dynamics of the
system). This invariance does not exist in the case of a pseudomagnetic field. The Hamiltonian
that describes the dynamics of a particle in strained graphene ([10]) contains a term v0σi Ai, where
v0 is the Fermi velocity of an electron on the lattice, σi is a Pauli matrix, and Ai is a component
of the vector potential. The addition of a function ∇ f to the vector potential would result in a
nontrivial term in the Hamiltonian.

Large magnetic fields are often physically difficult to realize (the National High Magnetic
Field Laboratory in Florida has a maximum output of 36 T); in contrast, applying a precise
strain is significantly easier to achieve. Pseudomagnetic fields are thus particularly salient to
experimental groups. The physical distinctions between real and pseudomagnetic fields open
the question of how the pseudomagnetic field interacts with a real magnetic field, which is the
subject of this work.

This work is divided into four additional sections. In the first section, we provide a brief
overview of the relevant physical properties of graphene, with references to additional literature
as necessary. In the second section, we use numerical simulations to demonstrate that the inter-
action between a real magnetic field B and a small pseudomagnetic field BS, rather than being
qualitatively equivalent to a field B+ BS, actually splits the Landau levels (a phenomenon undoc-
umented in any existing literature). In the third section, we use a variety of perturbative methods
to demonstrate that the most recent models for strained graphene (which were developed using
symmetry approaches in [6]) fail to extract this splitting. In the final section, we discuss potential
avenues to develop more sophisticated Hamiltonians that describe strain physics.
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1 Physical structure of graphene

This section provides a brief overview of the crystallographic structure of graphene. This review
is non-exhaustive; a more thorough description is presented in [3]. Graphene possesses a hexag-
onal structure, and is composed entirely of carbon atoms. The interactions between adjacent
sites are due to the overlap of the |2s〉 , |2px〉 , and

∣∣2py
〉

orbitals. These interactions lead to sp2

hybridization, and the new hybrid orbitals are linear combinations of the s and pi orbitals.
The hexagonal structure of graphene is described using a two-atom basis for a triangular

Bravais lattice. The lattice vectors and nearest neighbor (NN) vectors are

a1 =
√

3aex a2 =

√
3

2
a(ex +

√
3ey)

δ1 =
a
2
(
√

3ex + ey)
a
2
(−
√

3ex + ey) δ3 = −aey

(1)

where a ≈ 0.142 nm is the nearest neighbor distance. This is explicitly shown in Figure 1.
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Figure 1: The physical structure of graphene. The lattice is decorated with a two-atom basis,
labelled as A and B in this figure. The lattice vectors ai translate along the same sublattice, while
the nearest neighbor vectors δi move between sublattices.

2 Simulational Results

The simplest way to simulate the dynamics of a crystal is using the tight-binding method. The
explicit formalism of the tight-binding method is well documented (for instance, see [12] or [1])
and will not be discussed here. In a tight binding model, a hopping energy t is associated with
each bond between nearest neighbors (one can also associate a term for next-nearest neighbors,
which are on the same sublattice). The tight-binding method can be used to analytically find
energies for unstrained graphene (see [4]).

To implement a magnetic field, one uses the Peierl’s substitution, which adds an additional
phase associated with the magnetic field. The exact description of the Peierl’s phase is given by

t→ t exp
{

e
h̄

∫ rn+1

rn

A · rdr
}

(2)
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In this expression, A is the chosen vector potential for the magnetic field1. This is an excellent

approximation in the regime where a <<
√

h̄
eB

2.
Strain effects should carry an additional adjustment to the tight-binding parameter. In this

work, we primarily focus on triaxial strain, which can be roughly visualized as pulling along
three planar axes (see Figure 2).
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Figure 2: (Left) An unstrained lattice. (Right) A strain field corresponding to 10000 T (for visual-
ization purposes).

The modification due to strain for the hopping across two particular sites is given by ([7])

t→ t exp{−β(dn/a− 1)} (3)

In this expression, β = − ∂ ln t
∂ ln a ≈ 3.37, a ≈ 0.142 nm is the usual NN distance, and dn is the length

of the bond between the sites under consideration. Clearly in the zero strain case there is no
change in the hopping energy.

In principle, it is easy to now construct a tight binding Hamiltonian and diagonalize it, then
plot the eigenenergy distribution to examine the density of states. In practice, this is some-
what difficult. The resolution at which Landau levels are clearly visible and not washed out by
graphene’s large Van Hove singularities requires a graphene lattice on the order of 30 nm by
30 nm3. The memory required to diagonalize matrices of this size is prohibitively large, which
presents a significant barrier to further computational investigations.

1Some care must be taken when using this expression with periodic boundary conditions. The vector potential in
general is not periodic (for instance, A = (0, Bx, 0)). The transition from one side of the lattice to the other must be
chosen to carry an unphysical phase of exp{2πin}, with n an integer.

2The RHS of the inequality is known as the magnetic length.
3This is simply to see Landau levels. To witness nontrivial effects such as splittings and shifts, one would want

even larger matrices
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2.1 The Kernel Polynomial Method

To surmount computational barriers, we utilized the Kernel Polynomial Method (KPM) to di-
rectly compute the density of states. The KPM relies on the observation that a function f :
[−1, 1]→ � can be expanded in terms of orthonormal Chebyshev polynomials as

f (x) =
∞

∑
n=0

〈 f |Tn〉1
〈Tn|Tn〉1

Tn(x) = α0 + 2
∞

∑
n=1

αnTn(x) (4)

where the coefficients αn = 〈 f |Tn〉1 =
∫ 1
−1

f (x)Tn(x)
π
√

1−x2 dx. The weighting function 1/
√

1− x2

generally makes the integration computationally expensive, but some rearrangement gives

f (x) =
1√

1− x2

[
µ0 + 2

∞

∑
n=1

µnTn(x)
]

µn =
∫ 1

−1
f (x)Tn(x)dx

(5)

Using Equation 5 and rescaling the Hamiltonian so the eigenvalues lie in the interval [−1, 1]
(this can be done by directly calculating the extremal eigenvalues of the Hamiltonian using
the Lanczos algorithm ([5])), one can directly calculate the µn, which are known as moments.
There are two classes of moments. The first take the form of expectation values over Chebyshev
polynomials

µn = 〈β|Tn(H̃)|α〉 (6)

where H̃ is the rescaled Hamiltonian. The states |αn〉 = Tn(H̃) |α〉 can be constructed by using
the standard recursion relations associated with Chebyshev polynomials. Explicitly,

|α0〉 = |α〉
|α1〉 = H̃ |α0〉

|αk+1〉 = 2H̃ |αn〉 − |αn−1〉
(7)

These moments can thus be easily calculated. For sparse matrices with dimension D, the total
computational complexity to calculate N moments is O(ND).

The second class of moments involve a trace over the entire Hilbert space. Explicitly evalu-
ating these moments would be computationally taxing. Instead, one can stochastically evaluate
the moments using a small subset of random vectors. For instance, these moments often take the
form µn = Tr

[
ATn(H̃)

]
. This can be written as

µn = Tr
[
ATn(H̃)

]
≈ 1

R

R−1

∑
r=0
〈r|ATn(H̃)|r〉 (8)

We can now explicitly apply this formalism to the density of states ρ(E), which is given by

ρ(E) =
D−1

∑
k=0

δ(E− Ek) = Tr[δ(E− H)] (9)
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To find the density of states, we set A = I, and thus

ρ(E) = Tr[δ(E− H)] ≈ 1
R ∑

r
〈r|δ(E− H)|r〉 (10)

The accuracy of the KPM can be tuned further by expanding the number of random vectors
or the order to which the Chebyshev expansion is carried out. There are a number of further
computational considerations – for instance, dampening Gibbs oscillations – that arise in imple-
mentations of the KPM. For more details, see [11] for a thorough discussion.

2.2 Landau Level Splitting

Using the Peierl’s phase and the strain factor to set of a tight binding Hamiltonian, then using
the Kernel Polynomial Method to extract the density of states enables one to clearly see the effect
of the strain field on the Landau levels. The Landau levels asymmetrically split, as shown in
Figure 3.
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Figure 3: This plot displays asymmetric splitting of the density of states as a result of a small
strain field. The strain field is labelled in terms of the equivalent pseudomagnetic field, which
can be analytically determined.

Far away from E = 0, the splitting becomes harder to see. This is a natural product of the
KPM procedure, which works well for the eigenvalues smallest in magnitude. Nonetheless, this
asymmetric pattern consistently holds for 7-8 Landau levels. This splitting is a feature undoc-
umented in existing literature, and represents an exciting deviation from existing predictions
surrounding the pseudomagnetic field.

Finally, note that the splitting width scales linearly with the strain field strength, as shown in
Figure ??.
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Figure 4: The average splitting width plotted against the applied strain field. The error bars
(shaded) are calculated from the asymmetry between the peaks.

3 Analytic Results

In this section, I use strain Hamiltonians derived in [6] in an attempt to recover the features
discovered via simulation.

3.1 Expressing all quantities in terms of ladder operators

First, I diagonalize the Hamiltonian for graphene in a magnetic field using two sets of ladder
operators. I make the following definitions.

πi = pi − AS
i b =

1√
2B

(πx + iπy) a = b† − i

√
B
2

z̄ (11)

AR is the vector potential for a magnetic field of strength B. I will choose the symmetric gauge
defined by AR = B

2 (y,−x). Each pair of operators b, b† and a, a† satisfy the canonical commu-
tation relations; moreover, [b, a†] = [b, a] = 0. b, b† move between Landau levels, and a, a† move
between degenerate states within a given Landau level. z = x + iy, and z̄ = x− iy.

I can now write

πx =

√
B
2
(b + b†) πy =

√
B
2

1
i
(b− b†)

x =
i√
2B

(a− a† + b− b†) y =
1√
2B

(b + b† − a− a†)

(12)

3.2 Strained Hamiltonian

The Hamiltonian for strained graphene in the continuum limit, from [10], is

H = ivij(x)σi∂j + iv0σiΓi − v0σi Ai (13)
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where vij(x) is the tensorial Fermi velocity (that arises due to the strain), v0 is the Fermi ve-
locity of graphene given by 3a0t/2 (a0 is the nearest neighbor distance, t is the hopping energy
associated with nearest neighbor hops in the tight-binding approximation), Ai is the vector po-
tential associated with the pseudomagnetic field arising from the strain (this is distinct from the
AR

i in Equation 11, which describes the real magnetic field), σi are the Pauli matrices, and Γi is a
vector field defined by Γi =

1
2v0

∂jvij. Before writing these quantities explicitly, I pick the applied
strain field to be triaxial strain (which creates a uniform pseudomagnetic field). Triaxial strain is
described by the transformation

x → x + 2cxy y→ y + c(x2 − y2) (14)

c is a parameter that tunes the strength of the applied pseudomagnetic field. The two dimen-
sional strain tensor uij = (1/2)(∂jui + ∂iuj + (∂iz)(∂jz)), where ui is the displacement in the i
axis, is given by

uxx = 2cy uxy = 2cx
uyx = 2cx uyy = −2cy

(15)

I now explicitly write all the quantities in Equation 13. Γi and vij(x) account for both the
strain and the shift in the lattice sites.

Ax = − β

2a0
(uxx − uyy) = −

2βc
a0

y Ay = − β

2a0
(−2uxy) =

2βc
a0

x

vij(x) = v0
[
δij −

β

4
(2uij + δijukk) + ũij

]
= v0

[
δij + (1− β

2
)uij
] (16)

ũij is the linearized component of the strain tensor. Since there is no vertical change, ũij = uij.
Moreover, the strain tensor is traceless, so ukk = 0. The vector field Γi =

1
2v0

∂jvij is 0, as shown
below. Ai has an additional negative sign relative to [10]. Physically, this ensures that ∇×A is
in the +ẑ direction.

Γx = ∂xvxx + ∂yvxy =
1− β/2

2
(0 + 0) = 0

Γy = ∂yvyy + ∂xvyx =
1− β/2

2
(−2c + 2c) = 0

(17)

I apply the Peierl’s substitution to account for the application of a real magnetic field, so the
final Hamiltonian is

H = −vij(x)σiπj − v0σi Ai (18)

The Hamiltonian describing graphene under a real magnetic field is given by H = −v0σiπi.
Working in the basis of eigenstates of this Hamiltonian, the perturbation Hamiltonian can be
written as

H′ = −v′ij(x)σiπj − v0σi Ai (19)

where v′ij(x) = v0(1− β
2 )uij.
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3.3 Expansion of H’

My strategy now will be to expand H′ in terms of ladder operators a, a†, b, b†.

H′ = −v′ijσiπj − v0σi Ai

= −
{[

(1− β/2)yπx + (1− β/2)xπy

]
σx +

[
(1− β/2)xπx − (1− β/2)yπy

]
σy

}
−2βcv0

a0
(−yσx + xσy)

(20)

Factoring out the Pauli matrices and grouping terms yields

σx terms: (β/2− 1)yπx + (β/2− 1)xπy +
2v0βc

a0
y

σy terms: (β/2− 1)xπx − (β/2− 1)yπy −
2v0βc

a0
x

(21)

Inserting the ladder operator expressions into the σx terms gives

(β/2− 1)
{ (b + b† − a− a†)√

2B

√
B
2
(b + b†)

}
+ (β/2− 1)

{ (b† − b− a + a†)

i
√

2B

√
B
2

i(b† − b)
}

+
2v0βc

a0

( (b + b†)− (a + a†)√
2B

)
= (β/2− 1)(

1
2
)(b2 + b†b− ab− a†b + bb† + (b†)2 − ab† − a†b†)

+(β/2− 1)(
1
2
)((b†)2 − bb† − ab† + a†b† − b†b + b2 + ab− a†b)

+
2v0βc

a0

( (b + b†)− (a + a†)√
2B

)
= (β/2− 1)(b2 − a†b + (b†)2 − ab†) +

√
2
B

v0βc
a0

(b + b† − a− a†)

(22)

Similarly, the σy terms give
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(β/2− 1)
{ (b† − b− a + a†)

i
√

2B

√
B
2
(b + b†)

}
−(β/2− 1)

{ (b + b† − a− a†)√
2B

√
B
2

i(b† − b)
}

−2v0βc
a0

(b† − b− a + a†

i
√

2B

)
= (β/2− 1)(

1
2
)(−i)(b†b− b2 − ab + a†b + (b†)2 − bb† − ab† + a†b†)

+(β/2− 1)(
1
2
)(−i)(bb† + (b†)2 − ab† − a†b† − b2 − b†b + ab + a†b)

−
√

2
B

v0βc
ia0

(b† − b− a + a†)

= (β/2− 1)(−i)(−b2 + a†b + (b†)2 − ab†)−
√

2
B

v0βc
ia0

(b† − b− a + a†)

(23)

Because the eigenvalues of the magnetic field Hamiltonian H = −v0σiπi take the form(
|n, m〉
|n− 1, m〉

)
, the only terms that lead to nonzero matrix elements in the Hamiltonian within

the degenerate subspace are those that have the form
(

0 f
g 0

)
, where f has one more b† than b,

and g has one more b than b†. Throwing away terms that do not match these conditions, and
using Equations 22 and 23 and the explicit form of the Pauli matrices gives

f =
[
(β/2− 1)(−a) +

√
2
B

v0βc
a0
− (β/2− 1)(−a) +

√
2
B

v0βc
a0

]
b†

g =
[
(β/2− 1)(−a†) +

√
2
B

v0βc
a0

+ (β/2− 1)(a†) +

√
2
B

v0βc
a0

]
b

⇒
√

2
B

2v0βc
a0

(
0 b†

b 0

) (24)

This takes exactly the same form as the magnetic field Hamiltonian. The first order correction
to the magnetic field energy levels will be

√
2
B

2v0βc
a0

(
〈n, m′| 〈n− 1, m′|

) (0 b†

b 0

)(
|n, m〉
|n− 1, m〉

)
=

4
√

2v0βc√
Ba0

√
nδmm′

(25)

3.4 σz Term

The first order treatment thus fails to break the perturbation, which is at odds with our ob-
servation that the simulated splitting scales linearly with the applied strain field. However, [6]
introduces an additional term proportional to σz, the structure of which suggests it may be suc-
cessful in splitting the Landau levels.
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The generalized Hamiltonian presented in [6] has seven terms Hi, i ranges from 0 to 6.
H1, H3, H4 = 0 (H3 is negligible due to the appearance of a NNN term). Notably, we have al-
ready done the work to find most of this Hamiltonian in terms of ladder operators, since ∑5

i=0 Hi
is precisely the Hamiltonian we had written previously. To treat this Hamiltonian perturbatively,
one would make the Peierl’s substitution and consider the shift from ∑6

i=1 Hi.
First, we evaluate H6. I work in units where β = − ∂ log t

∂ log a is positive.

H6 = [∂y(uxx − uyy) + 2∂xuxy]σx = 8cσx (26)

As usual, c refers to the tuning parameter we use to describe the triaxial strain, not to the
speed of light. Again, we consider only nonzero matrix elements of the Hamiltonian within a
degenerate subspace described by the quantum number m. The Hamiltonian now takes the form

H′ =
(

3cV ′a2 f
g −3cV ′a2

)
(27)

I have added the requisite constant a6. Once again, for
(
〈n, m| 〈n− 1, m|

)
H′
(
|n, m〉
|n− 1, m〉

)
,

the nonzero terms of f have one more b† than b, and vice versa for g. This is the same condition
we originally imposed, so the only change is now the first order correction is

√
2
B

2v0βc
a0

(
〈n, m′| 〈n− 1, m′|

) (3cV ′a2 b†

b −3cV ′a2

)(
|n, m〉
|n− 1, m〉

)
=

√
2
B

2v0βc
a0

(
〈n, m′| 〈n− 1, m′|

) ( (3cV ′a2 +
√

n) |n, m〉
(−3cV ′a2 +

√
n) |n− 1, m〉

)
=

√
2
B

2v0βc
a0

[(3cV ′a2 +
√

n)δmm′ + (−3cV ′a2 +
√

n)δmm′ ]

=

√
2
B

4v0βc
a0

√
nδmm′

(28)

which is precisely the result we arrived at earlier. First order perturbation theory does not
seem to reveal the split in the degeneracy.

4 Outlook and Conclusion

Our computational work predicts that a strain field will split the Landau levels, and will do
so to first order in perturbation theory. This is in tension with the existing Hamiltonians that
describe strained graphene. In particular, a symmetry based analysis of the Hamiltonian used
in this work ([6]) suggests that this Hamiltonian captures all the relevant terms in the small-k
expansion. This suggests that strain effects might become relevant far from the Dirac points in
graphene. This would indicate that the continuum limit, which goes to first order in k-space,
is not an accurate descriptor of strain effects. To date, it is believed that most of the interesting
physical properties are captured by the continuum limit; if the second order expansion captures
these effects, it would reflect a significant new development in the physics of graphene.
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