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Abstract

The phrase ”liquid-liquid phase separation” has been prevalent in the field of bio-

physics over the last several years due to discoveries that have been made in cells and

other biological systems. These discoveries have revealed that biological systems un-

dergo thermodynamic phase separations, similar to how oil and water phase separate

when mixed together. For instance, scientists have observed organelles in cells, such

as P. granules, or proteins in the brain forming aggregates. The formation of aggre-

gates gives rise to different phases, each phase having a unique chemical composition

and intereacting with other phases like immiscible liquids. This occurs passively, as

if the system was tending towards thermodynamic equilibrium. This is interesting as

biological systems are not at equilibrium. In this report, we attempt to illuminate

the spatial and temporal dynamics of phase equilibria for ternary and quaternary sys-

tems, observing the kinetics and comparing to what we predict thermodynamically.

We discover that the kinetic results often differ from the thermodynamic pedictions.

This reveals that the kinetics of a mixture can only be fully understood from the

full temporal evolution of a system. However, finding a method for generalizing our

results and understanding how phase equilibria evolves in higher order systems still

remain a challenge.
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Chapter 1

Introduction

1.1 Challenges in Multicomponent Systems

Multicomponent systems are mixtures that contain multiple pure substances or

components [1]. A common example is the binary mixture of oil and water. Oil and

water are two immiscible liquids that possess different compositions. Multicomponent

mixtures often exhibit dynamic phase behavior, even when the number of components

is small. For instance, oil and water separate into two separate phases upon mixing,

a phenomenon known as a phase transition, when new phases form or when phases

coalesce.. Phases are defined as mechanically separable regions possessing different

compositions [2]. Since multicomponent systems have many applications in industry,

the rise of the study of their phase behavior has increased drastically over the past

several decades. For instance, in metallurgy, the development of multicomponent

metal alloys has required detailed understanding of both the microstructure and the

molecular organization of the mixtures. This understanding subsequently reveals

the number and types of phases that the system exhibits when certain key metals

used for manufacturing materials, such as nickel (Ni) or iron (Fe), have low or high

concentrations [3]. Study and development of metal alloys and their phase behavior

has allowed researchers and industrial workers to create robust metal mixtures that

have a wide range of applications, such as more bio-compatible orthopedics [4].

More recently, cells and other biological systems are being studied as multicom-

ponent systems. For example, membraneless organelles segregate into different com-

partments of the cell, undergoing phase transitions. This segregation is crucial for

controlling cellular organization [5]. Another example of phase transitions in biology
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has emerged in the study of neurodegenerative diseases such as Amyotrophic Lateral

Sclerosis (ALS). RNA-binding proteins fused in sarcoma (FUS) transition into var-

ious aggregate states that behave as phase separated liquids. Unfortunately, these

aggregate states become neurotoxic, adding to a cascade of other complications that

lead to ALS. Other neurodegenerative diseases are also believed to be related to phase

transitions and aggregation of proteins [6].

The presence of multicomponent systems in a wide range of applications, from

metal production to medicine, has raised questions on how to quantify the phase

behavior and dynamics of multicomponent systems. Unfortunately, understanding

the dynamics of an arbitrarily large system of N components is highly nontrivial. It

requires one to simultaneously solve many differential equations relating to different

properties of the system, such as the free energy, using first principles from thermody-

namics and statistical mechanics [7]. Nonetheless, people still study multicomponent

systems by starting from systems with only N = 2 (binary) or N = 3 components

(ternary). Studies of these small component systems still provide beneficial insight

for how higher order systems, mixtures with several components, behave. The ki-

netics and thermodynamics of binary systems are well documented [8, 9, 10, 11, 12],

though detailed knowledge of ternary and higher order systems is not as well devel-

oped. Thus, in this report, ternary and quaternary systems (N = 4) were studied and

characterized.

1.2 Objectives and Outline

1. Understand the morphologies for ternary and quaternary systems in two dimen-

sions.

2. Construct thermodynamic and kinetic phase triangles for the systems of choice.

3. Explore and analyze the dynamics of the ternary mixture by varying the ini-

tial conditions (starting compositions) and interaction parameters between each

component.

4. Study equimolar quaternary mixture dynamics by varying the interaction pa-

rameters.

5. Attempt to formulate a method for generalizing key results for N-component

systems.
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The rest of this report will be as follows: the remainder of Chapter 1 will contain more

background on multicomponent systems, the theory and models used to study them,

and the experimental evidence used to propel research in this field. Chapter 2 will

discuss the numerical methods used to solve Model B, the main equation of interest

for our systems that we are studying. Chapter 3 will discuss the key results obtained

from our studies, and Chapter 4 will briefly summarize what we have learned and

how that relates back to the main problem at hand and what others have done in the

past. Afterwards, directions for future work will addressed.

1.3 Experimental Evidence

Many multicomponent systems with hundreds or thousands of components only

give rise to few unqiue phases, often fewer than 10. This is especially true in biology.

For instance, liquid-liquid phase separation has been shown in cells, facilitating the

packing of membraneless organelles. Reference [13] has shown that ribosomes, DNA,

and RNA form spherical packings in biological cells, often showing only three phases

and effectively very few components, even though there are technically hundreds of

components. The study of multicomponent systems is especially challenging and

interesting since a mixture of hundreds or thousands of components can behave like

a system with effectively much fewer components. Thus, this provides evidence and

support for studying smaller mixtures like ternary and quaternary systems, as they

can provide insight for higher order systems, mixtures with many more components.

1.4 Thermodynamics Background

The amount of each component is often denoted by a concentration, which could

be defined on a mass or molar basis. When the dynamics of multicomponent mixtures

are studied, the important questions often are concerned with how many phases exist

under a prescribed set of parameters and what types of morphologies are observed,

i.e. what spatial configurations do the different components visit? This is determined

by the thermodynamics of the system. If the system is closed, it will obey the first

and second laws of thermodynamics, which state that energy is conserved and the

entropy of the system is always increasing [14]. These laws are important, as energy

and entropy are often in competition with each other. Systems generally try to

minimize their free energy, often defined as the system’s capacity to do work [15] while
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maximizing their entropy. Depending on the compositions of the different components

present and the component’s tendencies to interact or repel each other, sometimes

energy dominates and other times entropy dominates. For instance, in a regular

solution, a system discretized into grids where each grid contains at most one molecule

[16], the free energy density of a regular polymer solution, as characterized by the

Flory-Huggins theory [17, 18], is given by

f(c) =
N∑
i=1

ci ln(ci) +
∑
i<j

χijcicj, (1.1)

where the set of {ci} are the concentrations of each of the N components in the solu-

tion, constrained by
∑

i ci = 1, and χij is the interaction energy between components

ci and cj. The free energy is given in units of kBT , where kB is Boltzmann’s constant

and T is absolute temperature. The first term in the Equation (1.1) is the entropy

dominated term and the second term is energy dominated. For illustration purposes,

consider a two-component system. When the interaction energy, χ12 is small, the en-

tropy term dominates. Under entropy-dominating conditions, the system will prefer

to be well mixed and will stabley exist as one phase when equilibrium is reached.

Conversely, when the interaction energy is large enough, the energy term dominates,

allowing the system to separate into two different phases even though it is usually

not entropically favorable for the molecules of the system to self-segregrate [16]. This

is illustrated in the bottom plot of Figure 1.1. Competition between energy and en-

tropy also give rise to locally stable or unstable regions of the system, conditions that

are determined by the second derivative of the free energy. For instance, consider-

ing a two-component system, the magnitude of the interaction energy will determine

whether the second derivative of the free energy density will be positive or negative.

A positive second derivative means that the system must raise its free energy to move

to another composition, so the system is stable. Stable systems are situated in the

binodal region for two component systems. When the second derivative is negative,

the system lowers its free energy by moving to a different composition, meaning that

the system is inherently unstable. Unstable systems are situated in the spinodal

region [16].

The binodal and spinodal regions can be visualized in phase diagrams. Phase

diagrams are graphs that depict how thermodynamically distinct phases can coexist,

depending on how many components are in the system. Construction of these systems

is heavily dependent on the free energy of the system and entropy. As an example,
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the top plot of Figure 1.1 shows the phase diagram for a binary system. Depicted

is the free energy of the system as it changes as a function of the concentration of

one of the components, with the binodal and spinodal regions labeled. The binodal

region corresponds to the conditions where two phases can coexist, where the system

free energy is stable. This stability is visualized in the local minima of the graph,

where the second derivative is positive. The spinodal region corresponds to the region

where one phase exists, but small fluctuations will cause the system to phase separate.

This instability is visualized in the local maximum of the graph, where the second

derivative is negative.

Figure 1.1: Binary Phase Diagram. Top: On x axis is the concentration of one of the components.
On the y axis is the normalized free energy. Bottom: On the y axis is the value of interaction energy,
χ. Figure adapted from Reference [19].

For ternary and quaternary systems, phase diagrams in the form of triangles and

triangular pyramids respectively delineate how phase equilibria is related to compo-

sition of the different components [20]. An example of a ternary phase diagram is

shown in Figure 1.2. The different colored regions correspond conditions where the

system exists in a one-phase (black), two-phase (blue), or three-phase (white) state,

depending on the concentration of all three components, A, B, and C. More details

on how these diagrams are read will be discussed further in Chapter 3.
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Figure 1.2: Example of a ternary phase diagram.

1.5 Current Models

Several models have been proposed for the dynamics of multicomponent systems.

For instance, the stochastic Allen-Cahn equation, often referred to as Model A, de-

scribes the dynamics of the system with a nonconserved parameter that is not uniquely

determined by concentration, temperature, pressure, etc. [21]

∂φ

∂t
= −Γ

δF [φ]

δφ
+ ξA(~r, t), (1.2)

where the nonconserved parameter, φ, often represents the phase of the system; Γ

is the mobility constant; δF [φ]
δφ

is the free energy functional of the system; ξA is a

stochastic term with 〈ξA〉 = 0 and 〈ξA(~r1, t1)ξA(~r2, t2)〉 = 2ΓkBTδ(~r1 −~r2)δ(t1 − t2);

kB is Boltzmann’s constant; T is the absolute temperature in Kelvin.

Similar to Model A, Model B, also known as the stochastic Cahn-Hilliard-Cook

equation, is a generalized diffusion equation that uses a locally conserved parameter,

such as concentration c, to describe the dynamics of the system [21]:

∂c

∂t
= Γ∇2 δF [c,∇c]

δc
+ ξB(~r, t), (1.3)

where 〈ξB〉 = 0 and 〈ξB(~r1, t1)ξB(~r2, t2)〉 = −2ΓkBT∇2δ(~r1 −~r2)δ(t1 − t2). Since c is

locally conserved, it follows Fick’s second law: ∂c
∂t

= −∇ ·~J, where ~J = ∇ δF [c,∇c]
δc

. For

this report, Model B was utilized for studying 3- and 4-component systems.
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Chapter 2

Numerical Methods

2.1 Finite Element Method (FEM)

Quantitative analysis of multicomponent systems and phase transitions often re-

quire solving partial differential equations (PDEs). One common numerical method

for solving PDEs is finite differences [22]. However, this method has its flaws as it is

prone to numcerial instability. Thus, we used a general, more robust tool for finding

numerical solutions to PDEs known as Galerkin’s FEM in this report to solve Model B

[23]. FEM was implemented in the open-source computing platform FEniCS (Finite

Element Computing Software) [24], which provides a means to solve PDEs efficiently

and effectively using FEM utilizing Python and C++ interfaces.

Before Model B was solved, we solved a few easier equations first to understand

how FEM is implemented. One of our test cases was the wave equation [25]

∂2u

∂t2
= c2∇2u, u(0, t) = u0,

∂u(0, t)

∂t
= 0, (2.1)

where u is the spatial displacement of the wave and c is the speed of light, prescribed

a value of 1 for simplicity, and u0 is the initial displacement. In order to solve the

wave equation, it was broken down into two coupled differential equations:

∂u

∂t
= v,

∂v

∂t
= ∇2u, u(0, t) = u0, v(0, t) = 0, (2.2)

The time derivatives were discretized and solved implicitly using the Crank-Nicholson
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method [26]:

∂u

∂t
≈ un+1 − un

∆t
=
vn+1 + vn

2
,

∂v

∂t
≈ vn+1 − vn

∆t
= ∇2

(
un+1 + un

2

)
. (2.3)

Here, un+1 and vn+1 are the unknown functions that we wish to solve. These are

denoted as trial functions. On the other hand, un and vn are functions that we

have already solved for. These are conveniently coined the known functions. The

Laplacian term, ∇2, is handled using Galerkin’s FEM. We first start by formulating

the wave equation in variational form [23, 24]. In order to turn the wave equation

into its variational form, we multiply each of the two coupled equations by a test

function, utest or vtest, integrate the resulting equations over the domain Ω that the

wave equation is defined in, and perform integration by parts on the Laplacian terms.

The formulation is outlined below:

First, isolate the trial functions to one side:

un+1 =
∆t

2
(vn+1 + vn) + un, vn+1 =

∆t

2
∇2(un+1 + un) + vn. (2.4)

Then multiply by the test functions and integrate over Ω:∫
Ω

un+1 · utest dx =
∆t

2

∫
Ω

[(vn+1 + vn) + un] · utest dx, (2.5)

∫
Ω

vn+1 · vtest dx =
∆t

2

∫
Ω

[∇2(un+1 + un) + vn] · vtest dx. (2.6)

Equation (2.6) can be simplified further. First, we know that for two functions u and

v, ∇ · (v∇u) = ∇v · ∇u + v∇2u ⇒ v∇2u = −∇v · ∇u + ∇ · (v∇u). Second,

once we integrate, the divergence term ∇ · (v∇u) can be simplified further using the

divergence theorem, which states [27]:∫
Ω

∇ · (v∇u) dx =

∫
∂Ω

(v∇u) · n̂ ds =

∫
∂Ω

∂u

∂n
v ds, (2.7)

where ∇u · n̂ ≡ ∂u
∂n

. As the boundary ∂Ω gets larger, the term in Equation (2.7) goes

to zero. Hence, we can rewrite Equation (2.6) as:∫
Ω

vn+1 · vtest dx =
∆t

2

∫
Ω

[−∇(un+1 + un) · ∇vtest + vn · vtest] dx. (2.8)
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The left-hand sides of Equations (2.5) and (2.8) are known as the bilinear forms, while

the right-hand sides are known as the linear forms. Breaking down the equations into

these two forms is essential to implementing FEM in FEniCS.

2.2 Implementation in FEniCS

Below is how the code was implemented in Python. Original code was developed

by Dr. Sheng Mao at Princeton University following the guidelines for FEniCS for

similar equations [24]:

# import necessary library

from fenics import *

# this line is to set the plotting

backend of fenics to matplotlib to

avoid error messages

parameters [’plotting_backend’] = ’matplotlib’

# extra features that might be used from matplotlib

from matplotlib import pyplot as plt

# set notebook to show figures by default

%matplotlib inline

# ohter standard libraries

import numpy as np

# build mesh and function space

# 1D: UnitIntervalMesh, 2D: UnitSquareMesh, 3D: UnitCubeMesh

mesh = UnitIntervalMesh(20)

# build elements

ele = FiniteElement("CG", mesh.ufl_cell(), 1)

# mixed function space

ME = FunctionSpace(mesh, MixedElement([ele, ele]))

# our functions (u,v) stored in w

w = TrialFunction(ME) # unknowns
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wPrev = Function(ME) # previous step (known function)

wTest = TestFunction(ME) # arbitraty test functions (no need to know)

# split them here

u, v = split(w)

uPrev, vPrev = split(wPrev)

uTest, vTest = split(wTest)

# exact solution, initial and boundary conditions

alpha = 1.3

beta = 1.0

D = 1.0

t = 0.0

dt = 0.01

steps = 50

# Define exact solution

wExact = Expression((’sin(pi*x[0])*cos(pi*t)’, ’-pi*sin(pi*x[0])*sin(pi*t)’),

degree=2, pi=pi, t=0)

# initial condition

wPrev = interpolate(wExact, ME)

# boundary condition

def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(ME, wExact, boundary)

"""

this is important. so from the plots below we know that we need to split the
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function wPrev again to make sure that uPrev and vPrev are not assigned as 0,

otherwise the initial condition will be wiped out!!!

"""

# before split

plot(uPrev)

plt.title(’Before Splitting wPrev second time’)

# after split

uPrev, vPrev = split(wPrev)

plt.figure()

plot(uPrev)

plt.title(’After Splitting wPrev second time’)

Output of code in Figure 2.1.

Figure 2.1: Output of using FEniCS to solve the wave equation. This output is to check that
initial conditions are as prescribed before moving forward.

# weak formulation

# source term

f = Constant(0.0)

# Equation one: u = uPrev + 0.5*(v+vPrev)*dt

F1 = u*uTest*dx - uPrev*uTest*dx - 0.5*dt*(v+vPrev)*uTest*dx

11



# Equation two: v = vPrev + 0.5*(acc+accPrev)*dt

accPrev = f*vTest - D*inner(grad(uPrev), grad(vTest))

acc = f*vTest - D*inner(grad(u), grad(vTest))

F2 = v*vTest*dx - vPrev*vTest*dx - 0.5*dt*(acc+accPrev)*dx

# assemble the linear system of equations

F = F1 + F2

# split the left and right hand sides

a, L = lhs(F), rhs(F)

# solution to be stored in w

w = Function(ME)

# looping in time to obtain time-dependent solution

# steps: num of time steps

# dt: time step

# all defined at the beginning of the code

for step in range(steps):

# advance in one time step

t += dt

step += 1

wExact.t = t # this also updates the boundary condition bc

solve(a==L, w, bc)

# update previous step

wPrev.vector()[:] = w.vector()

## compare with exact solution

wExactFunc = interpolate(wExact, ME)

## "%" means remainder. so every 10 steps we output figures

if step%10 ==1:

# figure one, the u field

plt.figure()
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plot(w.split()[0])

# compare with exact solution

plot(wExactFunc.split()[0])

# set the ylimit of the 1D plot

plt.ylim(-1,1)

# figure two, the v field

plt.figure()

plot(w.split()[1])

# compare with exact solution

plot(wExactFunc.split()[1])

# set the ylimit of the 1D plot

plt.ylim(-4,4)

# calculate error and print it out on screen

error = (w.vector().array() - wExactFunc.vector().array()).max()

# %f means floating number, %g means scientific notation,

.3 means three decimals

print (’t = %.3f, error = %.3g’ % (t, error))

Below in Figure 2.2 are selected outputs of the wave equation solution in 1-

dimension. As one can see, the wave starts flat, rises, then descends. This pattern

continues for all time steps that this simple simulation was run. Other simple test

cases were used but the wave equation was the most simple and representative case

illustrating how the more complicated Model B will be solved later.

2.3 Solving the Cahn-Hilliard-Cook Equation

Model B without the stochastic term is given by

∂c

∂t
= Γ∇2 δF [c,∇c]

δc
. (2.9)
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Figure 2.2: Output of using FEniCS to solve the wave equation. This output shows evolving
standing wave for three subsequent time steps.

Our free energy functional, F , is defined as [28]

F [c,∇c] =

∫∫∫
V

(f(c) + κ(∇c)2) dV, (2.10)

where f(c) is the free energy density and κ is the composition gradient energy. The

variational derivative of the free energy functional can be obtained from the definition

of the differential of the free energy function dF :

dF =

∫∫∫
V

dV

(
δF [c,∇c]

δc

∣∣∣∣
c0

δc+
δF [c,∇c]
δ(∇c)

∣∣∣∣
c0

δ(∇c)

)
, (2.11)

where the free energy variational derivative is evaluated at a certain concentration, c0.

Here, we assume that there is no perturbation in the first spatial derivative, making

δ(∇c) = 0 and removing the second term in Equation (2.11).

To solve Equation (2.11), we must first rewrite it, understanding that the differ-
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ential dF is simply the change in the free energy functional [29]:

dF = F [c+ δc,∇c]− F [c,∇c], (2.12)

where δc is assumed to be a small perturbation and F [c+ δc,∇c] is defined as

F [c+ δc,∇c] =

∫∫∫
V

(f(c+ δc) + κ(∇(c+ δc))2) dV. (2.13)

Having a small perturbation allows use to perform a Taylor expansion of the free

energy density, f(c+ δc), and keep the first order term [29]:

F [c+ δc,∇c] ≈
∫∫∫

V

(
f(c) +

∂f

∂c

∣∣∣∣
c0

δc+ κ[(∇c)2 + (∇δc)2 + 2(∇c) · (∇δc)]

)
dV.

(2.14)

Again, since δc is small, (∇δc)2 is negligible. We can simplify Equation (2.14) even

further, however. Given two equations, h and g, we can utilize the mathematical

identity: ∇h · ∇g = ∇ · (h∇g)− h∇2g. If we allow h = δc and g = c, we can utilize

the identity in Equation (2.14):

F [c+ δc,∇c] ≈
∫∫∫

V

(
f(c) +

∂f

∂c

∣∣∣∣
c0

δc+ κ(∇c)2 + 2κ[∇ · (δc∇c)− δc∇2c]

)
dV.

(2.15)

Here, the ∇ · (δc∇c) term goes to zero thanks to the divergence theorem again [27],

which states that ∫∫∫
V

∇ · (δc∇c) dV =

∫∫
S

(δc∇c) · n̂ dS, (2.16)

which tends to zero and the surface of integration becomes arbitrarily large. At last,

we arrive at the final form of F [c+ δc,∇c]:

F [c+ δc,∇c] ≈
∫∫∫

V

(
f(c) +

∂f

∂c

∣∣∣∣
c0

δc+ κ(∇c)2 − 2κδc∇2c

)
dV. (2.17)

Now we can evaluate dF as

dF =

∫∫∫
V

dV

(
∂f

∂c

∣∣∣∣
c0

− 2κ∇2c

)
δc =

∫∫∫
V

dV
δF [c,∇c]

δc

∣∣∣∣
c0

δc. (2.18)
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By inspection, we retrieve our equation for the variational derivative:

δF [c,∇c]
δc

=
∂f

∂c
− 2κ∇2c. (2.19)

The exact form of the free energy density will determine the form the variational

derivative will take. For this report, the regular solution model [28] for the free

energy density was used for N = 3 and N = 4 component systems with an added

term to account for interfacial energy between different components:

f(c) =
N∑
i=1

ci ln(ci) +
∑
i<j

χijcicj −
1

2
λ2
∑
i<j

χij∇ci · ∇cj, (2.20)

where c is a vector of N−1 independent concentrations, defined as c ≡{c1, c2, .., cN−1}
and

∑N
i=1 ci = 1; λ is defined as [28]:

γab = λ

∫ 1

0

√
2κ∆f0dφ, (2.21)

with κ defined as [28]

κ = −
∑
i<j

χij(c
a
i − cbi)(caj − cbj). (2.22)

Here, γab is simply the surface tension and is used as a means to calculate λ for a

system; ∆f0 is additional free energy that must be accounted for at the interface

between two components; φ denotes a general phase while a and b denote phases that

are in contact.

2.4 Numerical Analysis of the Cahn-Hilliard-Cook

Equation

Our next main challenge is numerical solving Model B. This was done using finite

element method on the software package FEniCS. In order to solve Model B, it was

broken into two coupled differential equations and solved in the same manner that

the wave equation from Equation (2.1) was solved:

∂c

∂t
= Γ∇2µ, (2.23)
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µ ≡ δF [c,∇c]
δc

=
∂f

∂c
− 2κ∇2c. (2.24)

The time derivative is discretized and solved implicitly using the Crank-Nicholson

method as well [26]:
∂c

∂t
≈ cn+1 − cn

∆t
=

1

2
(µn+1 + µn). (2.25)

The simulations were done on a 2-dimensional grid that was 96x96 in size and the

test functions were denoted by ctest and µtest. Full code was fully developed and

implemented by Dr. Sheng Mao of Princeton University. The code (omitted here)

was adapted for this research project.
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Chapter 3

Results and Discussion

3.1 Ternary System

For the 3-component system, the free energy density took the form

f(c1, c2, c3) =
3∑
i=1

ci ln(ci) +
∑
i<j

χijcicj −
1

2
λ2
∑
i<j

χij∇ci · ∇cj, (3.1)

where c1 + c2 + c3 = 1. Table 3.1 contains the values of the parameters studied:

Table 3.1: Values for all the interaction energies and interfacial energies for a 3-component system.

Parameter Value
χ12 2.5
χ13 3.0
χ23 3.5
λ 5·10−5

3.1.1 Thermodynamic Results

For this 3-component system, we know that it produces a thermodynamic ternary

phase diagram, as shown in Figure 3.1. The formulation of this phase diagram is

detailed in Reference [30] but the method is briefly outlined in this report. The phase

diagram was constructed by taking the convex hull of the characteristic functions of

this heterogeneous ternary system, such as functions that carry information about the

internal energy and entropy. These characteristic functions have a special property:
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functions over intensive variables like temperature are convex. Meanwhile, functions

of extensive variables like entropy are concave (negative of a convex function) [30].

The convex hull of a set Λ of points defined in an affine space over R is the

smallest convex set that contains Λ [31]. A convex set, ζ, is defined as a subset of

an affine space with the property that any convex combination of any two elements,

x and y, will also belong in the set, ζ. In other words, ∀ α ∈[0,1], if {x, y}∈ ζ, then

αx+(1−α)y ∈ ζ [31]. Knowing what a convex set is, a convex function, f , is one that

is defined on a convex set, ζ, with the following property: ∀ α ∈[0,1], and ∀ {x, y}∈ ζ,

f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y) [31]. These concepts from convex analysis were

utilized with thermodynamics to used to construct these triangles. Understanding

Figure 3.1: Thermodynamic ternary phase diagram when χ12 = 2.5, χ13 = 3.0, and χ23 = 3.5.
Red region indicates one phase coexistence, green region indicates two-phase coexistence, and blue
region indicates three-phase coexistence. Produced by Sheng Mao from Princeton University.

what the thermodynamic triangle looked like, it was important to see if, kinetically,

our system would observe the same number of phases for a given concentration on

our thermodynamic phase triangle.

3.1.2 Kinetic Results

We assigned RGB colors to each pure component. c1 is denoted with red, c2 with

green, and c3 with blue. This can be seen in Figure 3.2 (left), which was to be used as

reference in conjunction with the ternary phase triangle in Figure 3.2 (right). Every

single point in the interior of the triangle corresponds to a concentration of each
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component, whoch can be shown by drawing a line to the edges of the triangle like

in Figure 3.3.

Figure 3.2: Left is a reference RGB triangle for the different components used in ternary system.
Right adapted from https://commons.wikimedia.org/wiki/File:Ternary plot 1.png. Arrows point
toward increasing concentration on the axis of the component with the matching color.

Figure 3.3: All interior points correspond to a concentration profile. In this example, the interior
point corresponds to a concentration of 0.4 c1, 0.4 c2, and 0.2 c3.

By running simulations for our 3-component system, the final configurations were

studied and observed at different initial concentrations, eventually enabling us to con-

struct a kinetic phase triangle, as shown in Figure 3.4(a). We defined the concentra-
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tions of all three components by varying two parameters σ and ω, where {σ, ω} ∈ [0, 1]:

{c1, c2, c3} = {σ(1− ω), (1− σ)(1− ω), ω}. (3.2)

It is trivial to verify that 1 = σ(1 − ω) + (1 − σ)(1 − ω) + ω = c1 + c2 + c3. We

prescribed values for ω and σ:

ω = {0.05, 0.1, 0.2, 0.25, 0.34, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, (3.3)

σ =


{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} if ω ≤ 0.6,

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} if 0.7 ≤ ω ≤ 0.8,

{0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65} if ω = 0.9.

(3.4)

Having defined our concentrations, we were able to run simulations with different

initial concentrations, view the phase equilibria, and create the kinetic phase dia-

gram. As we can see in Figure 3.4(a), the three-phase region represented by white

dots has shrunk into only a small subsection of the theoretical three-phase region,

while the one- and two-phase regions have increased in size. This finding is partic-

ularly interesting as it draws attention to the fact if we do not wait for a system

to go to equilibrium, we cannot accurately predict the number of phases we will see

soley from equilibrium thermodynamics. This is very relevant in biological systems,

where time scales of events do matter, such as protein folding [32], and thermody-

namic equilibrium is not always reached. When thermodynamic equilibrium is not

reached, understanding the kinetics of the dynamics involved with phase equilibria

becomes increasingly important. Understanding of the temporal dynamics would

require the construction of kinetic phase diagrams as the systems evolves in time.

Kinetic diagrams would be crucial for quantitatively assessing how the three-phase

region changes as the interaction parameters are altered and as the systems settles

closer to equilibrium. This kind of analysis would also prove beneficial in uncovering

where to observe N-phase coexistence in an N-component system. For illustration

purposes, nine points, three for the three-phase, two-phase, and one-phase regions

each, were selected (as indicated in Figure 3.4(b)) and the phase plots of their final

configurations are shown in Figure 3.5.
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a b

Figure 3.4: a: Kinetic ternary phase diagram when χ12 = 2.5, χ13 = 3.0, and χ23 = 3.5. Red region
indicates theoretical one-phase coexistence, green region indicates theoretical two-phase coexistence,
and blue region indicates theoretical three-phase coexistence. Meanwhile, the black dots indicate
the observed one-phase coexistence, gray dots indicate observed two-phase coexistence, and white
dots indicate observed three-phase coexistence. b: Selected points that are displayed in Figure 3.4.

3.1.3 Stability Analysis

One of our main goals from this project is to generalize our results and under-

stand how we can predict phase equilibria behavior in an N-component system. One

prediction of interest is being able to predict when one will observe N-phases with an

N-component mixture. This can be done using a stability analysis of the free energy

of the system. More specifically, we must calculate and analyze the eigenvalues of

the Hessian matrix of the free energy, computed with respect to the concentrations

of each component. For the ternary system, our Hessian matrix will be a 2x2 sym-

metric matrix since there are only two independent variables due to the constraint

c1 + c2 + c3 = 1; thus, defining two concentrations is enough to define all three. If

both eigenvalues are positive at a particular concentration set {c1, c2, c3}, the Hessian

matrix is positive definite, meaning that the free energy is at a local minimum at that

concentration and changing to a different concentration set will raise the free energy

of the system. The system is stable at this point, creating a one-phase region. Having

one negative eigenvalue means that the Hessian has a saddle point at prescribed con-

centration set and the free energy is at a stationary point that can be easily perturbed.

Hence, the free energy is likely to separate out into an additional phase, creating the

two-phase region. If the Hessian has two negative eigenvalues, the free energy is at

a maximum and the system will have to phase separate into three phases to lower

its energy, indicating the three-phase region [27]. A similar ternary diagram plot was
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1:{0.855, 0.095, 0.05} 2:{0.095, 0.855, 0.05} 3:{0.035, 0.065, 0.9}

4:{0.45, 0.45, 0.1} 5:{0.05, 0.45, 0.5} 6:{0.36, 0.24, 0.4}

7:{0.33, 0.33, 0.34} 8:{0.3, 0.45, 0.25} 9:{0.15, 0.15, 0.7}

Figure 3.5: Phase diagrams for the ternary case when χ12 = 2.5, χ13 = 3.0, and χ23 = 3.5 that
correspond to the labels in Figure 3.3(b). Numbers in curly brackets are concentrations of c1, c2,
and c3, respectively. Top row is one-phase region. Middle row is two-phase region. Bottom row is
three-phase region.

made in MATLAB, assigning spots on the triangle that corresponded to one-, two-,

or three-phase regions based on whether the initial concentration values resulted in

a Hessian matrix with two, one, or zero positive eigenvalues. Figure 3.6 displays the

eigenvalue ternary phase triangle. We see in Figure 3.6 that the one- and two-phase

regions roughly correspond to the one- and two-phase regions in Figure 3.4(a). How-

ever, there is no three-phase region. It has become a two phase region as well. This

is peculiar as the thermodynamic and kinetic triangles from Figures 3.1 and 3.4(a)

both indicate a three-phase coexistence region for this ternary system. Perhaps the

eigenvalue analysis is indicative of the initial kinetics of the system. For instance,

according to our thermodynamic and kinetic triangles, we expect to see three phases

when {c1, c2, c3} = {1/3, 1/3, 1/3}. However, we only see two phases according to
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Figure 3.6: Kinetic ternary phase diagram created from eigenvalues of the Hessian matrix when
χ12 = 2.5, χ13 = 3.0, and χ23 = 3.5 at various compositions. The black dots indicate the concen-
trations that give rise to two positive eigenvalues, indicating that those correspond to one-phase
coexistence. The gray dots indicate the concentrations that give rise to one positive eigenvalue,
indicating that those correspond to two-phase coexistence..

Figure 3.6. This may suggest that, initially, the system separates into two distinct

phases. Then, one of those phases separates into two additional phases at a later time

when the dynamics have changed. While this behavior is hard to indicate on the time

evolution of the ternary system (not shown here), the explanation that the stability

analysis reveals the initial kinetics of the system is plausible and is supported by our

results obtained in the quaternary component case, which will be discussed more in

depth in Section 3.2.

3.2 Quaternary System

For the 4-component system, the free energy density took the form

f(c1, c2, c3, c4) =
4∑
i=1

ci ln(ci) +
∑
i<j

χijcicj −
1

2
λ2
∑
i<j

χij∇ci · ∇cj, (3.5)

keeping in mind that the free energy density is only a function of three independent

variables, {c1, c2, c3}, with c4 = 1− c1 − c2 − c3. Here, c1, c2, and c3 still correspond

to red, green, and blue in our phase plots. In addition, c4 is represented by black.

We investigated four different cases by varying the interaction parameters. This

parameters are tabulated in Table 3.2. For simplicity, we kept the concentrations of

all four components to be equal. Our aim was to compare how the kinetics and final

configurations of each case compared with each other. Case 1 is our test case where
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all interactions, which should give rise to four phases. Its evolution at different time

points are displayed in Figure 3.7.

Table 3.2: Interaction parameters used in equimolar quaternary system.

Case 1 Case 2 Case 3 Case 4
χ12 4.2 3.0 4.0 3.0
χ13 4.2 3.0 4.0 3.5
χ14 4.2 3.5 3.5 4.0
χ23 4.2 3.5 3.5 4.0
χ24 4.2 4.0 3.0 3.5
χ34 4.2 4.0 3.0 3.0
λ 2·10−5 2·10−5 2·10−5 2·10−5

First, we begin with one phase. Then, we suddenly get the appearance of each

component emerge from the initial uniform phase. Eventually, once the dynamics

relax, we have four phases. To verify if we expect to get four phases, the eigen-

values of the Hessian of the free energy density were calculated for {c1, c2, c3, c4} =

{0.25, 0.25, 0.25, 0.25} and at the interaction parameters indicated for Case 1 in Ta-

ble 3.2. The Hessian matrix indeed has three negative eigenvalues, which is what we

would expect for a four component system to show four coexisting phases. Next, we

Figure 3.7: Evolution of Quaternary Case 1 in Table 3.2. Top row: Snapshots at 10 time steps,
300 steps, and 350 steps. Bottom row: Snapshots at 400 steps, 450 steps, and 500 steps. All time
steps are 10−4 seconds.

looked at Cases 2 and 3, which were very similar as we simply switched the roles of

components c1 and c4 by inverting the order of the interaction parameters. The phase

plots showing their time evolution are shown in Figure 3.8.

For both cases, we initially see one phase in the very beginning, then we have

the development of two phases, a bulk phase and a minor phase that forms droplets.

Eventually, the remaining phases form from the initial bulk phase. Thus, at the end of
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Case 2

Case 3

Figure 3.8: Evolution of Quaternary Cases 2 and 3 in Table 3.2. For both cases, the top row
corresponds to number of time time steps: 10, 350, 700, the bottom row corresponds to number of
time steps: 1000, 1500, 2000. Time step are 10−4 seconds.

the dynamics, we do see four separate phases such as in the equal concentration case,

Case 1, though the final configurations do not take the same morphologies. Naturally,

it is crucial to check the eigenvalues of the Hessian for Cases 2 and 3. Both have only

one eigenvalue, indicating that only two phases will coexist at equal concentration

at the prescribed interaction values. However, we do see four coexisting phases by

letting the system evolve. This is similar to the phenomenon we saw with the ternary

case. Here, in the beginning, we initially do have two phases that coexist for a period

of time, then, the remaining phases form. This is support that the eigenvalue analysis

is telling of how many coexisting phases there are for the initial state of the system,

but not for the later dynamics.

Lastly, Case 4 was subjected to the same analysis. Figure 3.9 also shows its

dynamics via phase plots. Initially, there are two phases as well, then eventually,

each phase gives rise to two separate phases. Then the phases tend to equilibrate

and spread out, eventually ending in four distinct phases. Based on the results of
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Case 2 and Case 3, we should expect the Hessian matrix to have only one negative

eigenvalue, corresponding to the initial two phases that exist at the beginning of

the system dynamics. This is indeed what we observe. Thus, through analysis of

the four component cases, we see that the eigenvalues of the Hessian matrix provide

information of the phase coexistence when system dynamics have begun, but is not

informative of how many phases will coexist later on when the system has evolved

further. Generalizing this result to N components will be fairly easy as one only

needs to observe the initial dynamics of an N component system and evaluate the

corresponding free energy Hessian matrix.

Figure 3.9: Evolution of Quaternary Case 4 in Table 3.2. Top row: Snapshots at 10 time steps,
100 steps, and 250 steps. Bottom row: Snapshots at 550 steps, 1500 steps, and 2000 steps. All time
steps are 10−4 seconds.

27



Chapter 4

Conclusions and Future Work

During our study of the ternary system, we learned that the kinetic phase di-

agram constructed from our simulations does not match the thermodynamic phase

diagram. This result revealed that kinetics of a system matter in addition to its be-

havior at thermodynamic equilibrium. Knowledge of how each region in the phase

diagram changes kinetically provides information on how a thermodynamic system

will evolve when equilibrium occurs too slowly in the time period of interest, such as

many biological systems. By analyzing quaternary mixtures, we also learned that the

eigenvalue stability analysis only provides information of coexisting phases for the

initial dynamics, a result that can easily be verified in higher order mixtures.

In this report, the final morphologies observed were analyzed qualitatively. For

example, it was easy to see that Cases 1 through 4 for the quaternary mixture looked

different when the systems were allowed to evolve. However, these differences were

not quantitatively analyzed. In the future, a more quantitative method for assessing

the final morphologies of the different phases we see from our phase diagrams must

be developed differentiate and categorize systems with various interaction parameters

and compositions as they evolve in time. Development of a more quantitative method

will be useful for studying real systems in three dimensions, where the morphologies

become even more complicated with an additional degree of freedom. For instance,

in addition to the morphologies observed in this report, the different components

can pack in spherical or ellipsoidal compartments in three dimensions, a phenomenon

observed in Feric et al. [13]. Additionally, a systematic method for uncovering how

an N-phase coexistence region would evolve for different systems with N components

must be developed, a feat that may be accomplished by investigating other mathe-

matical properties of the free energy and other characteristic equations of the system.
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