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Summary

As the world population continues to grow the demand on
common pool resources like water will continue to increase. In
the absence of management, individual extractors may ignore
their own impact on supply, leading to a tragedy of the
commons. This describes a scenario in which harvesters do not
cooperate to extract at a socially optimal level [1, 2, 3].
Tavoni, Schlüter, and Levin [1] examined a socio-ecological
ecosystem (SES) model of resource extraction which used
ostracism as a mechanism to stabilize cooperation. Much of the
SES literature describes qualitatively positive feedback loops as
stabilizers of alternative stable states like cooperation.
During my internship, I investigated and applied a tool from
systems dynamics, loop eigenvalue elasticity analysis (LEEA),
that may allow us to describe quantitatively how the strength of
loops impacts the eigenvalues and thus dynamics of an SES. This
poster presents the preliminary results of this analysis.

Harvest-Cooperator Model

Figure: Diagram from [2]

R, fc = Resource, Fraction Cooperators
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c = inflow

Rmax = capacity of resource

d = discharge

k = curvature

q = conversion factor

E = total effort

πd = payoff to defector

πc = payoff to cooperator

ω(fc) = Gompertz growth function

I This model describes a population of harvesters removing a resource from
the environment

I Social ostracism by the cooperators imposes a punishment on defectors
that extract more than the socially optimal amount

I Replicator dynamics describe how the fraction of cooperators change over
time

Loop Eigenvalue Elasticity Analysis

I Construct a directed graph from the system of differential equations. If
variable X appears in the equation for dY

dt then there is an edge from
X → Y . The edge gain is defined as dY

dX

I Find a shortest independent loop set - the smallest set of loops that are
linearly independent

I For each point in time and each loop calculate the loop gain g =
∏
G(e)

where G(e) is the edge gain for each edge in the loop.
I For each point in time calculate the eigenvalue λ of the linearized system
I The eigenvalue elasticity is defined as ε = dλ

dg
g
λ

I Those loops having a strong influence on the dynamics of the system may
have a large corresponding elasticity

I For more information refer to [4, 5]
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Figure: These plots show the results of LEEA on the harvester SES. Since the original model
has two stable equilibria, the analysis is shown on the left for initial conditions leading to
the defector equilibrium and on the right for initial conditions leading to the mixed
equilibrium. The first and second rows show the time series and eigenvalues of the linearized
Jacobian respectively. The third and fourth rows show the loop influence corresponding to
each of the eigenvalues where each loop is represented by a different colored line.

I For both initial conditions the interaction loop has little to no influence
I The ecological loop has a negative influence on the first eigenvalue and

little influence on the second
I The social loop influence undergoes a discontinuity but has strong influence

on the first eigenvalue when converging to the defector equilibrium

Discussion and Next Steps

I The positive feedback loop caused by ostracism in the social loop may be
the strongest driver towards the defector equilibrium

I Some of the noise can be attributed to machine precision however the
cause of the discontinuity remains unclear

I Can we understand the meaning of loop influence from a dynamical systems
theory perspective?

I Use this example to apply LEEA to other SES
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