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Abstract. In this paper, we examine discrete time propagation graphs as a potential framework

for thin scattering layer models. The particular class of interest are propagation graphs formed
from Cayley graphs of Zd, as their underlying geometry and shift-invariance make them appealing

as potential models of the desired physical process. We show that their shift-invariant nature makes
it possible to use Fourier analysis and residue calculus to recover exact expressions for transfer

functions on the graph when d = 1. Moreover, we reduce the propagation of Fourier modes on

the graph in the general case to the d = 1 case, and provide exact solutions for propagation in
a layer of the graph with a finite depth. We also consider direction-dependent propagation (e.g.

Mie scattering) and extend both the models and methods developed to this new regime. The

mathematical tools developed in this paper may provide a framework for the future development
of a model of thin scattering layers using graph theory.

1. Introduction

Thin scattering layers exhibit a property known as the memory effect, whereby a shift by a small
angle ∆θ to the incidence angle of an ingoing optical pulse will produce a corresponding shift ∆x to
the speckle pattern produced on the other side of the layer. Within a sufficiently small region, this
effect can be used to recover the autocorrelation of an input signal from a measured output signal
[1, 2], allowing one to image through these layers by exploiting their statistical properties. Our goal
is to study the scattering of light through thin layers from a different perspective. We aspire to
produce a graph theoretical model of light scattering through thin scattering layers, with the hope
that such a model may shed new light on the memory effect.

As the theoretical framework for our model, we consider a time-discretized variety of the propa-
gation graph structure found in the engineering literature (see [3]). These graphs describe the linear
propagation of an input signal through an arbitrary network structure. Given such a finite propaga-
tion graph, transfer functions between individual nodes can be computed via means of the resolvent
(the ”transfer matrix”) of the edge matrix between vertices in the network. We are particularly
interested in propagation on grid-like structures, where every vertex corresponds to a position in
space, and where the graph exhibits some kind of self-similarity. Therefore, we extend the theory of
propagation graphs to a number of special infinite graphs, particularly Cayley graphs of Zd, as well
as special directed versions thereof. We consider what happens when propagation is restricted only
to a thin layer of these graphs, and develop methods for computing exact transfer functions from
one side of the layer to the other.

Unfortunately, direct computation of the resolvent via matrix inversion is not always possible
– the graph may be infinite for example, as will commonly be the case in this paper. But in the
cases of interest to us, there are analytic techniques by which one can write down the entries of the
resolvent. While computation of arbitrary entries of the resolvent is usually not possible, we have
developed a number of algebraic techniques which allow other entries of the resolvent to be recovered
from knowledge of only a single entry or a knowledge of a few entries, which can be first computed
using residue calculus.
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This paper is structured primarily in three parts. In the first, we give a brief overview of prop-
agation graphs. We then transition to propagation on Cayley graphs of Zd and within thin layers
of these graphs. Finally, we extend the theory to the case where incidence direction determines the
manner in which a signal continues to propagate (e.g. Mie scattering). We also consider propaga-
tion graph models where the underlying graph structure or the transfer functions on the edges are
random. A discussion of these models can be found in appendix A.

2. Propagation Graphs

A propagation graph is a model of linear time-invariant propagation of a signal through a directed
network. A signal introduced to a vertex in the graph will propagate along the outgoing edges of
that vertex to other vertices in the graph. When this happens, each edge alters the incoming signal
by applying a transfer function. The destination vertex of the edge then receives this modified
signal. In the case where a vertex receives multiple signals from its ingoing edges, they are simply
added linearly. The signal then continues to propagate ad infinitum in the same manner. Since
the propagation of the signal through this graph is both linear and time-invariant, we can consider
transfer functions between individual vertices in the graph.

2.1. Discrete Time. The signals in question may be either discrete or continuous. We will differ-
entiate between the two by using brackets for discrete signals f [t], and parenthesis for continuous
signals f(t). For discrete time, relevant transfer functions are in terms of the z-transform, defined
as

(2.1) F (z) ≡ Z[f ] =

∞∑
t=−∞

f [t]z−t .

To define discrete-time propagation graphs, we now proceed as follows: Let G = (V,E) be a
directed graph and for each edge (i, j) ∈ E, let Ωij(z) be the transfer function of edge (i, j). Propa-
gation can now be formulated using these transfer functions. Each vertex i ∈ V has a corresponding
signal ψi[t] with z-transform Ψi(z) = Z[ψi]. These signals are related by the propagation equation

(2.2) Ψj(z) =
∑

(i,j)∈E

Ωij(z)Ψi(z) .

As we can see, the z-transform of a signal Ψj is the sum of all the signals on incoming edges
(i, j), modulated by the respective transfer functions Ωij . However, the propagation equation (2.2)
is sourceless, it does not allow us to introduce signals into the graph. To introduce a signal φj [t] at
vertex j, we add the z-transform Φj(z) = Z[φj ] to the propagation equation above, i.e.

(2.3) Ψj(z) =
∑

(i,j)∈E

Ωij(z)Ψi(z) + Φj(z) .

The edge matrix T (z) is defined using the transfer functions of the edges,

(2.4) Tij(z) ≡
{

Ωji(z) : (i, j) ∈ E
0 : o.w.

.

Using this matrix, we can rewrite (2.3) in matrix form,

(2.5) ~Ψ(z) = T (z)~Ψ(z) + ~Φ(z) .

We can solve for ~Ψ(z):

(2.6) ~Ψ(z) = (I − T (z))−1~Φ(z)

We will call the operator M(z) ≡ (I−T (z))−1 the transfer matrix of the system. The entries of M(z)
are the transfer functions between individual vertices. Note that if a lone signal with z-transform
Φi(z) is introduced at a vertex i, then (2.6) results in

(2.7) Ψj(z) = Mji(z)Φi(z) .
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In our upcoming analyzes, it is also useful to consider a power expansion of the operator M(z).
The operator M(z) can be expressed in terms of the Neumann series,

(2.8) (I − T (z))−1 ∼
∞∑
n=0

T (z)n .

This expansion holds when |z| is large enough such that the right hand of the equation converges
in the operator norm. Before we proceed, let us illustrate how the above generalizes to continuous
time.

2.2. Continuous Time. For continuous time, the transfer functions Ωij are with respect to the
Laplace transform,

(2.9) F (s) ≡ L[f ] =

∫ ∞
0

f(t)e−st dt .

All of the definitions are essentially the same as with the discrete time case. The propagation
equation becomes

(2.10) Ψj(s) =
∑

(i,j)∈E

Ωij(s)Ψi(s) + Φj(s) ,

where Ψi(s) = L[ψi] and Φi(s) = L[φi]. Furthermore, both (2.6) and (2.8) carry over into the
continuous time case. Though we will not use it, the continuous time case allows us finer control
over time delays. Alternatively, we could use the Fourier transform instead of the Laplace transform.
However, the Laplace transform has the advantage that it can handle systems which may highly
unstable. Propagation graphs of this form are the ones conventionally used in the engineering
literature.

2.3. Relationship to Matrix Spectra. The transfer matrix from (2.6) is closely related to the
spectrum of the operator T (z) at a given z ∈ C. For example, suppose that T (z) has a spectral
decomposition

(2.11) T (z) = Λ(z)

[⊕
i

λi(z)

]
Λ(z)† ,

where Λ(z) is unitary and λi(z) are the real eigenvalues of T (z). It is easy to see that the transfer
matrix M(z) ≡ (I − T (z))−1 is then given by

(2.12) M(z) = Λ(z)

[⊕
i

1

1− λi(z)

]
Λ(z)† .

From the above equation and the fact that

(2.13) det(I − T (z)) =
∏
i

(1− λi(z)) ,

we see that the poles of the transfer functions occur where λi(z) = 1. Moreover, this also holds for
matrices that do not necessarily have such a spectral decomposition. The placement of these poles
gives us an idea of behavior and stability of the corresponding impulse response. In particular, the
locations of these poles allows determines whether the resulting system is stable.

Perhaps the simplest systems we can analyze are those with unit delay, that is, where the edge
transfer matrix takes the form

(2.14) T (z) = z−1A

for some matrix A. Such a form means that each edge delays its input by 1 unit of time and
modulates it by a factor of Aij . For these type of matrices, we simply have λi(z) = z−1λi where λi
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denote the eigenvalues of A. Therefore, the poles of the transfer functions for these type of systems
occur precisely where z = λi. Indeed, (2.12) simply becomes

(2.15) M(z) = Λ

[⊕
i

1

1− z−1λi

]
Λ† .

3. Signal Propagation on Cayley Graphs of Zn

Our original project goal was to construct a graph-theoretical model of thin scattering layers
by taking the underlying graph to be random, i.e. taking A to be a random matrix selected from
some ensemble. Appendix A describes some of the models we examined and analyzed during the
course of this project. However, as one might expect, randomness seems to be insufficient to produce
meaningful physical models. Indeed, without extra considerations, it is difficult to identify such a
model with the propagation of light through a thin scattering layer. While such models account
for random structure, they are flawed because they lack a solid notion of the underlying geometry.
Therefore, we turn to studying propagation on Cayley graphs of Zd. These graphs generalize the
notion of propagation on a grid in d-dimensions, and as we will show, in certain scenarios it is possible
to compute closed-form solutions using analytic techniques. Our hope is that the mathematical
models we present in this paper can be further modified to produce a model of thin scattering layers
which coincides with experiment. The mathematical techniques we present in this paper may then
be used to analyze such a model.

The choice of Cayley graphs of Zd is motivated primarily by mathematical and geometrical
concerns. As already mentioned, these graphs generalize a notion of geometry we are looking for.
Furthermore, they also posses a notion of shift-invariance. Shift-invariance is particularly important
because it makes the computation of transfer functions tractable in some situations. While at first
such a restriction may seem overbearing, we believe it is reasonable to assume some notion of shift-
invariance given the problem we are trying to model. The small-scale structure of a scattering layer
may not be invariant under translations, but the underlying character of the random structure is.
Hence, building shift-invariance into our model both makes physical sense and is also helpful from
a mathematical perspective, because it means we can apply tools from Fourier analysis.

We endeavor to develop a shift-invariant model together with rudimentary tools to extract useful
information from the result. The first natural step in this direction is to consider graphs which look
approximately like “grids.” The idea is that each vertex of these graph corresponds a scattering
site, where some scattering event occurs. Hence, these graph structures lend a notion of locality to
the model which was previously missing.

We use Cayley graphs of Zd as our generalization of “grid-like” graphs.1 While these graphs are
infinite, they benefit from an aforementioned notion of locality and distance. An example graph can
be seen in figure 1. Consider such a Cayley graph G of Zd with generators {g1, g2, ..., gk}. To convert
this graph into a propagation graph, we associate with each generator g ∈ G a corresponding transfer
function Ωg(z), with the understanding that when the signal traverses an edge corresponding to g,
it picks up a factor of Ωg(z). Since we have made the transition from finite graphs to infinite graphs,
the edge matrix T (z) and the transfer matrix M(z) = (I − T (z))−1 are no longer finite dimensional
operators. Therefore, we instead frame propagation on the graph G in terms of a propagation kernel
in Fourier space. This propagation kernel is given by

(3.1) K(ξ; z) ≡
∑
g∈G

Ωg(z) e2πig·ξ ,

where ξ = (ξ1, ξ2, ..., ξd) are the Fourier variables corresponding to the dual of the group Zd. To
see how the kernel encodes propagation on the Cayley graph, consider the signals ψv[t] at vertices

1Alternatively, one could also consider Cayley graphs of Z/m1Z×Z/m2Z× ...×Z/mdZ instead. This corresponds
to the finite periodic version of the infinite Cayley graphs of Z. However, the analysis is easier to perform for infinite

graphs than for finite ones because it allows for the use of tools from mathematical analysis.
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Figure 1. A section of the Cayley graph of Z2 with the generators (1, 0), (0, 1),
(−1, 0), and (0,−1). This graph is precisely an infinite two-dimensional grid graph.
This graph is the de facto example for all of the tools we develop in this section.

v = (v1, v2, ..., vd). The underlying system is governed by the equations

(3.2) ~Ψ(z) = T (z)~Ψ(z) + ~Φ(z) ,

where Ψv = Z[ψv], Φv(z) is the input to the system at vertex v, and T (z) is the transfer matrix
defined as in equation (2.4). Since we are on a Cayley graph, T (z) has a simple form. Writing
equation (3.2) in terms of the individual entries gives

(3.3) Ψv(z) =
∑
g∈G

Ωg(z)Ψv−g(z) + Φv(z) .

We define the spatial Fourier transform Ψ̂ as

(3.4) Ψ̂(ξ; z) ≡
∑
v∈Zd

e−2πiξ·v Ψv(z) ,

and likewise for Φ̂. The inverse of definition (3.4) is given by the Fourier inversion formula,

(3.5) Ψv(z) =

∫ 1/2

−1/2

e2πiξ·v Ψ̂(ξ; z) dξ .

Taking the spatial Fourier transform of equation (3.3) now gives us

(3.6) Ψ̂(ξ; z) =
∑
g∈G

Ωg(z) e2πig·ξ Ψ̂(ξ; z) + Φ̂(ξ; z) ,

which we immediately recognize as

(3.7) Ψ̂(ξ; z) = K(ξ; z) Ψ̂(ξ; z) + Φ̂(ξ; z) .

From this, we may solve for the desired quantity Ψ̂,

(3.8) Ψ̂(ξ; z) =
1

1−K(ξ; z)
Φ̂(ξ; z) .

Inverting the Fourier transform,

(3.9) Ψv(z) =

∫ 1/2

−1/2

e2πiξ·v

1−K(ξ; z)
Φ̂(ξ; z) dξ =

∑
w∈Zd

[∫ 1/2

−1/2

e2πiξ·(v−w)

1−K(ξ; z)
dξ

]
Φw(z) .
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Figure 2. A section of the Cayley graph of Z with the generators 1 and −1.

Hence, in this scenario, the transfer matrix M(z) has entries given by

(3.10) Mvw(z) =

∫ 1/2

−1/2

e2πiξ·(v−w)

1−K(ξ; z)
dξ

The impulse response from one vertex to any other vertex can now be computed by extracting the
z−t coefficients of the above expression using the inverse z-transform. Note that eq. (3.10) depends
only on the difference between the two vertices v and w, as one would expect from a shift-invariant
system. Moreover, eq. (3.10) encodes all of the propagation information of the entire system. But
while the transfer matrix (3.10) is a nice expression, computing it in closed form for all v and w can
prove difficult.

As an example, we consider the probability distribution of a random walk on G. For a simple
random walk, we set

(3.11) Ωg(z) ≡ z−1

k
.

For a random walk on a grid graph of dimension d, where the generators are given by ±δ1, ±δ2, ...,
±δd, the propagator becomes

(3.12) K(ξ; z) =
z−1

d

d∑
j=1

cos 2πξj .

The corresponding transfer matrix entries are given by eq. (3.10). These are difficult to compute
generally, but we can oftentimes compute them when v = w. For example, as we will see shortly, in
the case where d = 1, for |z| > 1,

(3.13) Mvv(z) =
1√

1− z−2
= 1 +

1

2
z−2 +

3

8
z−4 +

5

16
z−6 +O(z−8) =

∞∑
n=0

1

22n

(
2n

n

)
z−2n .

Note that the coefficients of z−t correspond to the probabilities that the random walk lands on
vertex v after t time steps.

3.1. The Special Case of Symmetric Grid Graphs in Dimension One. In general, analysis
of the transfer matrix M(z) entries via the formulation in eq. (3.10) can be very difficult. However,
there is one case where the analysis is significantly easier – the case in which G is an undirected
path in dimension one. Here, the generators of G in Z are given by g1 = 1 and g2 = −1 and the
result is a graph which resembles an infinite chain, as seen in figure 2. Moreover, we suppose that
the propagation is symmetric, that is,

(3.14) Ω1(z) = Ω−1(z)

In this case, we simply call the transfer function above Ω(z) and assume that all edges have transfer
function Ω(z). Physically, this means that there is no distinction between the signal scattering from
the left or the right. To begin the analysis, we want to know what we call the self-transfer function
S(z) ≡Mvv(z). We note that eq. (3.10) gives us an analytic expression for S(z),

(3.15) S(z) =

∫ 1/2

−1/2

1

1−K(ξ; z)
dξ .

Noting that K(ξ; z) is 1-periodic in ξ, we can evaluate S(z) using complex analysis by shifting the
contour. In general, K(ξ; z) can be made exponentially large by taking ξ with large imaginary
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component. This means by taking the contour

(3.16) γR : −1/2→ 1/2→ 1/2 + iR→ −1/2 + iR→ −1/2 ,

residue calculus gives us

(3.17)

∮
γR

1

1−K(ξ; z)
dξ = 2πi

∑
ξk

resξ→ξk
1

1−K(ξ; z)
,

where the sum is over all zeroes of 1 −K(ξk; z) in the interior of γR when |z| > 1. Moreover, note
that the vertical parts of the contour integral cancel since K(ξ; z) is 1-periodic in ξ. As we take
R → ∞, K(ξ; z) becomes very large, so the integral over the lower part of the contour vanishes,
leaving us with

(3.18) S(z) = lim
R→∞

∮
γR

1

1−K(ξ; z)
dξ = 2πi

∑
ξk

resξ→ξk
1

1−K(ξ; z)
,

where the sum is now over all zeroes of 1−K(ξ, z) with −1/2 < Re[ξ] < 1/2 and Im[ξ] > 0.
For illustrative purposes, we’ll compute the self-transfer function using this method for a simple

random walk on Z. To make the notation simpler, we will use ω ≡ z−1. As per eq. (3.12), we have

(3.19) K(ξ;ω) = ω cos 2πξ .

The only relevant zero of 1−K(ξ;ω) now occurs at ξ0 = 1
2π cos−1 1

ω . The residue at this point can
be computed to be

(3.20) resξ→ξ0
1

1− ω cos 2πξ
= − 1

2π
√
ω2 − 1

.

eq. (3.17) now gives us the correct result for S(z),

(3.21) S(z) =
1√

1− z−2

This brings us part of the way to finding the desired result Mvw(z) for arbitrary v and w. The
second step in deriving the full transfer matrix M(z) is a clever use of the symmetry of the system.
Let N(z) denote the transfer function of a vertex to its neighbor, that is N(z) = Mv+1,v(z). By
symmetry, we must also have N(z) = Mv−1,v(z), since both the vertex to the left of v and the vertex
to the right of v will have the same transfer function from v. First, we use the identity

(3.22) M(z) = T (z)M(z) + I .

Taking the vv-entry of this matrix equation gives

(3.23) Mvv(z) =
∑
w

Tvw(z)Mwv(z) + I .

But since Tvw(z) = 0 except when w = v ± 1, where it equals Ω(z), we get

(3.24) S(z) = 2Ω(z)N(z) + 1 ,

and correspondingly,

(3.25) N(z) =
S(z)− 1

2Ω(z)
.

Note that the same trick to derive the neighbor transfer function N(z) can be done in any number
of dimensions where the Ωi(z) are all equal. As we will see, in higher dimensions it is difficult to
go further than an immediate neighbor. However, the one dimensional case is special because in
order to traverse the graph from one vertex to another, it is necessary that one visit all the vertices
in between. This feature gives rise to a clever trick which will allow us to go beyond immediate
neighbors and derive a full closed-form solution. But first, we must introduce some new machinery.
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3.2. Sinks and Marked Vertices. Eventually, we want to be able to designate areas of the grid
as “sinks” such that any signal entering these areas will be removed from the system, corresponding
to the notion of light leaving a scattering layer. But first, let us try to break the transfer functions
in the matrix M(z) up into components based on how many times the signal hits a certain vertex
v. To do this, we add a dummy variable x to the transfer function each time a specific vertex v is
touched. As such, we rewrite the governing equations as

(3.26) ~Ψ(z, x) = [I + (x− 1)Pv]T (z)~Ψ(z, x) + ~Φ(z) ,

where Pv = δvδ
†
v is the projection operator onto vertex v. This adds a factor of the dummy variable

x to the incoming edges of the vertex v. The transfer matrix now becomes

(3.27) M(z, x) = [I − [I + (x− 1)Pv]T (z)]
−1

.

The resulting signal is naturally split up into components where the nth component corresponds to
the part of the signal which passes through the vertex v n times,

(3.28) ~Ψ(z, x) = M(z, x)~Φ(z) =

∞∑
j=0

~Ψ(j)(z)xj .

Note that the above corresponds to a Taylor expansion in x. Hence, each component can be calcu-
lated via the equation

(3.29) ~Ψ(n)(z) =
1

n!

∂n

∂xn
~Ψ(z, 0)

With a little more effort, we can mark multiple vertices v1, v2, ..., vm at once by simply rewriting
the governing equations again:

(3.30) ~Ψ(z, x1, ..., xm) =

[
I +

m∑
i=1

(xi − 1)Pvi

]
T (z)~Ψ(z, x1, ..., xm) + ~Φ(z) .

The signal is now split via the dummy variables xi, and the component of the signal with coefficient
xj11 x

j2
2 ...x

jm
m corresponds to the part of the signal which has passed j1 times through vertex x1, j2

times through vertex x2 , etc. We obtain similar expressions for the multi-vertex case:

M(z, x1, x2, ..., xm) =

[
I −

[
I +

m∑
i=1

(xi − 1)Pvi

]
T (z)

]−1

,

~Ψ(z, x1, x2, ..., xm) =

∞∑
j1,j2,...,jm=0

~Ψ(j1,j2,...,jm)(z)xj11 x
j2
2 ...x

jm
m ,

~Ψ(n1,n2,...,nm)(z) =
1

n1!n2! ... nm!

∂n1

∂xn1
1

∂n2

∂xn2
2

...
∂nm

∂xnm
m

~Ψ(z, 0, 0, ..., 0) .

(3.31)

If we set x1 = x2 = ... = xm = 0, then the vertices x1, x2, ..., xm are what we will call “sinks,”
as they essentially absorb any incoming signal. The result is equivalent to removing the vertices
corresponding to markers x1, ..., xm from the system entirely. On the other hand, if we set x1 =
x2 = ... = xm = 1, then we recover the original system. Indeed, one can think of the factors xi as
attenuation to any signals entering the vertices vi.

The natural question is to ask how this change of equations modifies the transfer matrix M . First,
for the sake of clean notation, we define

(3.32) A(z, x1, x2, ..., xm) =

m∑
i=1

(xi − 1)Pvi .

To further condense notation, we write x instead of x1, x2, ..., xm. Let the new transfer matrix
obtained from introducing these sinks be denoted by M(z, x) and the old transfer matrix be denoted
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by M(z) = M(z, 1). We use the shorthand,

(3.33) J(z, x) = M(z, x)− I ,
and correspondingly J(z) = J(z, 1). From the above eq. (3.32), we can write

(3.34) J(z, x) = [I − (I +A(x))T (z)]
−1 − I =

∞∑
n=1

[(I +A(x))T (z)]
n
.

Now, we group the terms by how many times T (z) appears before the first A(x),

J(z, x) =

∞∑
n=1

 n∑
j=1

[(I +A(x))T (z)]
n−j

A(x)T (z)j + T (z)n


=
∑
j≤n

[(I +A(x))T (z)]
n−j

A(x)T (z)j +

∞∑
n=1

T (z)n

=

∞∑
j=1

∞∑
n=j

[(I +A(x))T (z)]
n−j

A(x)T (z)j + J(z)

=

∞∑
j=1

∞∑
n=0

[(I +A(x))T (z)]
n
A(x)T (z)j + J(z)

=

∞∑
j=1

M(z, x)A(x)T (z)j + J(z)

= (J(z, x) + I)A(x)

∞∑
j=1

T (z)j + J(z)

= (J(z, x) + I)A(x)J(z) + J(z) .

(3.35)

Therefore, it follows that

(3.36) J(z, x) = (A(x)J(z) + J(z))(I −A(x)J(z))−1 .

The above equation can be expanded into

(3.37) J(z, x) = J(z) +A(x)J(z) + J(z)A(x)J(z) +A(x)J(z)A(x)J(z) + J(z)A(x)J(z)A(x)J(z)...

which is equivalent to

(3.38) M(z, x) = M(z) +M(z)A(x)J(z) +M(z)A(x)J(z)A(x)J(z) + ...

Alternatively, we may write

(3.39) M(z, x) = M(z)(I −A(x)J(z))−1 .

Note that all of the above derivations hold true for arbitrary A(x). This provides a nice expression
for the transfer function of the system with the vertices marked by x1, ..., xm removed,

(3.40) M(z, 0) = M(z)

[
I +

m∑
i=1

PviJ(z)

]−1

.

In many cases, this expression is far more practical than deriving the transfer function of a system
with a number of vertices removed outright. For example, considering the case of an infinite grid
where there is an abundant amount of symmetry, it is already difficult enough to derive M(z) in
closed form. Removing a number of the vertices of the grid makes the problem of finding M(z) even
more difficult, since one can no longer rely on Fourier analysis if the symmetry of the grid is broken.
Therefore, eq. (3.40) provides a nice alternative. Moreover, if the attenuation factor 1− x is small,
then it is possible to approximate M(z, x) by truncating the series expansion (3.38).
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Figure 3. Example propagation graph used for illustration. Gray vertex denotes
a sink. When a signal enters this vertex it is absorbed (a signal may exit the vertex,
however). The edge is given the transfer function z−1.

For illustrative purposes, we provide a quick derivation of the above quantities for the graph
shown in figure 3. The edge matrix T (z) for this graph is given by

(3.41) T (z) =

[
0 z−1

z−1 0

]
.

An easy computation gives the unmodified transfer matrix where the sink vertex is treated as normal:

(3.42) M(z) =
1

1− z−2

[
1 z−1

z−1 1

]
=

[
1 + z−2 + z−4 + ... z−1 + z−3 + z−5 + ...
z−1 + z−3 + z−5 + ... 1 + z−2 + z−4 + ...

]
.

This transfer matrix is reasonable. Without any absorption of the signal at the left vertex in figure 1,
whatever enters the system simply bounces back and forth between the two vertices forever. Treating
the left vertex as a marked vertex gives us a modified transfer matrix which can be computed from
eq. (3.39),

M(z, x) =
1

1− xz−2

[
1 xz−1

z−1 1

]
=

[
1 + xz−2 + x2z−4 + ... xz−1 + x2z−3 + x3z−5 + ...
z−1 + xz−3 + x2z−5 + ... 1 + xz−2 + x2z−4 + ...

]
.

(3.43)

If we make the vertex into a sink by setting x = 0, then we get

(3.44) M(z, 0) =

[
1 0
z−1 1

]
.

As we can see, this matrix corresponds to a system where signals may travel out of the left vertex,
but anything entering the left vertex vanishes.

If we want to get a snapshot of what enters a given sink before it vanishes, we can examine
expansions of the matrix M(z, x1, ..., xm) in the variables xi. In analogy to eq. (3.29), one has the
expansion

(3.45) M(z, x) =

∞∑
i1i2,...,im=0

M (i1i2...im)(z)xi11 x
i2
2 ...x

im
m ,

where M (i1i2...im)(z) is the portion of the transfer matrix M(z) that corresponds to paths entering
the vertex v1 a total of i1 times, the vertex v2 a total of i2 times, etc. To get a snapshot of what
enters a sink before vanishing, we simply need to consider the matrices M (0...1...0)(z), which can be
extracted very easily from the above expansion via the equation

(3.46) M (0...1...0)(z) =
∂

∂xi
M(z, 0) ,

where the index i is the position of the 1 in the expression M (0...1...0)(z). The entry M
(0...1...0)
viw (z) then

corresponds to the transfer function for what enters the sink vi from vertex w before disappearing.
For the example given in figure 3, this corresponds to

(3.47) M (1)(z) =

[
z−2 z−1

z−3 z−2

]
,

which matches our expectations, since if a signal is introduced at vertex 1, there is a time delay of 2
before it returns and vanishes. If a signal is introduced at vertex 2, there is a time delay of 1 before
it propagates to vertex 1 and vanishes.



DISCRETE TIME PROPAGATION GRAPHS FOR OPTICAL SCATTERING 11

3.3. The Walk Representation of the Transfer Matrix. Before we return to our derivation of
the full transfer matrix M(z) for a 1-D symmetric grid in section 3.1, we will shortly address the
walk representation of the transfer matrix M(z). This representation is very simple, it states that
the transfer function Muv(z) is the sum over all transfer functions of all walks on the graph G from
vertex v to vertex u. The derivation is immediate from eq. (2.8),

(3.48) Muv(z) = δuv + Tuv(z) +
∑
w1

Tuw1
(z)Tw1v(z) +

∑
w1w2

Tuw2
(z)Tw2w1

(z)Tw1v(z) + ... ,

Alternatively, we write this using different notation

(3.49) Muv(z) =
∑

w:v→u

l−1∏
i=0

Twiwi+1(z) =
∑

w:v→u
Tw(z) ,

where the sum is over all walks w = w0w1w2...wl from v to u in G, and Mω(z) is the transfer
function of the walk w, defined as the product of the transfer functions of the individual edges of
w. Similarly, the modified transfer matrix M(z, x) with marked vertices v1, v2, ..., vm can be easily
derived from eq. (3.31),

(3.50) Muv(z, x) =
∑
ω:v→u

l−1∏
i=0

Twiwi+1
(z)

m∏
j=1

(xj)
δvjwi+1 =

∑
ω:v→u

xc11 x
c2
2 ...x

cm
m Tw(z) ,

where ci is the number of times the walk w enters the marked vertex vi. In the above representation,
we can decompose Muv(z) by whether the walk w ever enters the vertex vi or not. Let W0 be the
set of walks that never enter vi and let Wi be the set of walks that terminate at vi but never enter
vi before termination. Then, we have

(3.51) Muv(z, x) =
∑
w∈W0

xc22 ...x
cm
m Tw(z) +

∑
w∈Wi

xa11 xa22 ...xamm Tw(z)
∑

w′:vi→u
xb11 x

b2
2 ...x

bm
m Tw′(z) ,

where ai = 1 and we have split the walks in the set Wi into two components. Every walk in Wi can
be decomposed into two walks w and w′, where w is a walk terminating at v1 which never enters vi
before it terminates and w′ is an arbitrary walk from vi to u. Essentially, we chop off the first part
of the walk before vi. a1, a2, ..., am and b1, b2, ..., bm are the corresponding marked vertex counts in
w and w′ respectively. We can now rewrite the above equation as

(3.52) Muv(z, x) = [Muv(z, x)]xi=0 + xi

[
∂

∂xi
Mviv(z, x)

]
xi=0

Muvi(z, x) .

Since u and v were chosen arbitrary, this can be written in operator form,

(3.53) M(z, x) = [M(z, x)]xi=0 + xiM(z, x)Pvi

[
∂

∂xi
M(z, x)

]
xi=0

.

Note that a similar expression can be derived by expanding the identity (3.38). However, this method
of derivation makes the underlying intuition clearer. Iterating the above equation for x1, x2, x3, ..., xN
gives

M(z, x) =

N∑
i=1

x1...xi−1 [M(z, x)]xi=0 Pvi−1

[
∂

∂xi−1
M(z, x)

]
xi−1=0

Pvi−2 ...Pv1

[
∂

∂x1
M(z, x)

]
x1=0

+ x1x2...xNM(z, x)PvN

[
∂

∂xN
M(z, x)

]
xN=0

PvN−1
...Pv1

[
∂

∂x1
M(z, x)

]
x1=0

.

(3.54)
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A similar decomposition can be performed simultaneously for all marked vertices v1, v2, ..., vm by
splitting the walks based on which marked vertex they enter first, i.e.,

(3.55) Muv(z, x) =
∑
w∈W0

Tw(z) +

m∑
i=1

∑
w∈Wi

x
ai,1
1 x

ai,2
2 ... xi ...x

ai,m
m Tw(z)

∑
w′:vi→u

xb11 x
b2
2 ...x

bm
m Tw′(z) ,

where Wi is the set of walks that terminate at vi and never enter either vi or any of the other marked
vertices before termination, and W0 is the set of walks which never enter any vi. In analogy to eq.
(3.52), this becomes

(3.56) Muv(z, x) = Muv(z, 0) +

m∑
i=1

xi

[
∂

∂xi
Mviu(z, 0)

]
Muvi(z, x) .

In operator form, the above can be written

(3.57) M(z, x) = M(z, 0) +

m∑
i=1

xiM(z, x)Pvi
∂

∂xi
M(z, 0) .

Note that eq. (3.57) can also be derived from eq. (3.38).
Eq. (3.57) gives us a practical method of computing what enters the sink vertices v1, ..., vn.

Setting xi = 1 in eq. (3.57) results in

(3.58) M(z) = M(z, 0) +

m∑
i=1

M(z)Pvi
∂

∂xj
M(z, 0) .

Taking the viv matrix entry of the above equation for arbitrary non-marked vertex v provides

(3.59) Mviv(z) = Mviv(z, 0) +

m∑
j=1

Mvivj (z)
∂

∂xj
Mvjv(z, 0) .

Since v is not marked, we know that Mviv(z, 0) = δviv = 0. Defining the desired quantity

(3.60) Hvjv(z) ≡
∂

∂xj
Mvjv(z, 0) ,

eq. (3.59) becomes a matrix equation,

(3.61)


Mv1v(z)
Mv2v(z)

...
Mvmv(z)

 =


Mv1v1(z) Mv1v2(z) ... Mv1vm(z)
Mv2v1(z) Mv2v2(z) ... Mv2vm(z)

...
...

. . .
...

Mvmv1(z) Mvmv2(z) ... Mvmvm(z)




Hv1v(z)
Hv2v(z)

...
Hvmv(z)

 ,
which means that we can solve for the individual Hvjv(z) by inverting the above linear system,

(3.62)


Hv1v(z)
Hv2v(z)

...
Hvmv(z)

 =


Mv1v1(z) Mv1v2(z) ... Mv1vm(z)
Mv2v1(z) Mv2v2(z) ... Mv2vm(z)

...
...

. . .
...

Mvmv1(z) Mvmv2(z) ... Mvmvm(z)


−1 

Mv1v(z)
Mv2v(z)

...
Mvmv(z)

 .
3.4. Return to Symmetric Grid Graphs in Dimension One. We now return to finish what we
started in section 3.1. We mark all vertices vi with a corresponding dummy variable xi as discussed
in the section 3.2 and 3.3. To compute the full matrix Muv(z), it suffices to compute MN0(z) for
N ≥ 1. This is where we will use the decomposition (3.54). Note that the summation term in the
decomposition corresponds to all walks which do not enter at least one of the vertices 1, 2, ..., N .
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However, since in dimension one we must necessarily enter all of these vertices to reach the vertex
N , the summation term vanishes in the 0N -entry of M(z, x), leaving us with

(3.63) MN0(z, x) = x1x2...xNMNN (z, x)

N∏
i=1

[
∂

∂xi
Mi,i−1(z, x)

]
xi=0

.

Computing MN0(z) requires letting xi = 1 for all xi. This transforms the above into

(3.64) MN0(z) = S(z)

N∏
i=1

∂

∂xi
Mi,i−1(z, ..., 1, 0, 1, ...) .

where the 0 occurs at the xi input of Mi,i−1. However, note that the translation invariance of the

system demands that all ∂
∂xi

Mi,i−1(z, ..., 1, 0, 1, ...) are identical. As such, the above equation can
be rewritten once again as

(3.65) MN0(z) = S(z)L(z)N .

It only remains to derive the quantity L(z). This is fairly easy, since we’ve already calculated
N(z) = M01(z) in eq. (3.25),

(3.66) S(z)L(z) = N(z) =
S(z)− 1

2Ω(z)
,

resulting in

(3.67) L(z) =
S(z)− 1

2Ω(z)S(z)
.

Using eq. (3.65), we arrive at a closed form solution for the transfer matrix M(z),

(3.68) Mij(z) = S(z)

[
S(z)− 1

2Ω(z)S(z)

]|i−j|
,

where S(z) can be calculated using the approach in eq. (3.18). The propagator is

(3.69) K(z; ξ) = 2Ω(z) cos(2πξ) .

Therefore, as per eq. (3.18), S(z) is given by

(3.70) S(z) = 2πi
∑
ξk

resξ→ξk
1

1− 2Ω(z) cos(2πξ)
.

As an example, for a simple random walk on Z, this procedure provides

(3.71) Mij(z) =
z|i−j|√
1− z−2

[
1−

√
1− z−2

]|i−j|
3.4.1. Symmetric Grid Graphs in Dimension One with Self-Loops. There are also situations which
may arise where the underlying graph may have self loops in addition to the structure we’ve already
examined. That is, where our generators are given by g0 = 0, g1 = 1, g2 = −1. The extra g0

generator gives self loops on all the edges. For symmetry, we once again require that

(3.72) Ω(z) ≡ Ω1(z) = Ω−1(z) .

However, the transfer function Ω0(z) corresponding to g0 may be arbitrary. The resulting propaga-
tion system can be easily analyzed with the same approach. The propagator becomes

(3.73) K(ξ; z) = 2Ω(z) cos(2πξ) + Ω0(z) .

The self-transfer function S(z) can be computed again with residue calculus,

(3.74) S(z) =

∫ 1/2

−1/2

1

1− 2Ω(z) cos(2πξ)− Ω0(z)
dξ = 2πi

∑
ξk

resξ→ξk
1

1− 2Ω(z) cos(2πξ)− Ω0(z)
.
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If N(z) is the neighbor transfer function, we have

(3.75) S(z) = 2Ω(z)N(z) + Ω0(z)S(z) + 1 ,

which gives

(3.76) N(z) =
S(z)Ω0(z) + S(z) + 1

2Ω(z)
.

To reach a vertex u from another vertex v, we must pass through all of the vertices in between.
Therefore, the analysis of the previous section still holds, and the transfer matrix can be computed
exactly. Using eqs. (3.65) and (3.66), the result is

(3.77) Mij(z) = S(z)

[
S(z)Ω0(z) + S(z) + 1

2Ω(z)S(z)

]|i−j|
.

3.5. Reduction to Dimension One. It is possible to recover information about propagation on
graphs in higher dimensions by using the technique described in the previous section, if the graph
meets certain properties. This can be done by splitting the graph G in d dimensions into an infinite
number of lateral d − 1-dimensional slices. By treating each of these slices as its own vertex and
collapsing the graph G onto these vertices, the result is a graph in dimension one – enabling us to
use the results of the previous section if the resulting graph has specific properties. Suppose that the
dth dimension is the direction orthogonal to the slices, that is each slice corresponds to the vertex
set Zd−1 × vd. Then, the requirements for the collapse procedure forming a symmetric grid graph
in dimension one are as follows:

(1) Locality : for every g = (v1, v2, ..., vd), we must have |vd| ≤ 1.
(2) Symmetry : for every g = (v1, v2, ..., vd) in the set of generators G, there must be a cor-

responding generator g′ = (v1, v2, ...,−vd) in G. Moreover, g and g′ must have the same
transfer function, Ωg(z) = Ωg′(z).

Condition (1) ensures that the resulting collapsed graph formed is indeed a grid graph on Z (or in the
degenerate case, the trivial Cayley graph on Z), and condition (2) ensures that we have symmetry
on the resulting collapsed graph, that is, Ω1(z) = Ω−1(z).

The collapse procedure is done as follows. Consider the propagation of a d− 1-dimensional plane
wave on G, that is, with input signal

(3.78) Φ(v1,v2,...,vd−1,vd)(z) = e2πiΞ1v1e2πiΞ2v2 ...e2πiΞd−1vd−1δ[vd] ,

where δ is the discrete Dirac delta function, and Ξ1,Ξ2, ...,Ξd−1 are the corresponding frequencies
of the plane wave. This initial data corresponds to a plane wave on the plane Zd−1×0 at time t = 0.
If the conditions (1) and (2) are met, then the propagator can be written as

(3.79) K(ξ; z) = K1(ξ1, ..., ξd−1; z) cos(2πξd) +K0(ξ1, ..., ξd−1; z) .

Therefore, we can compute the results of propagation by applying the propagator to the Fourier
transform of the input signal,

(3.80) Φ̂(ξ; z) = δ[ξ1 − Ξ1] δ[ξ2 − Ξ2] ... δ[ξd−1 − Ξd−1] .

It follows from eq. (3.4) that the system state Ψ is given by

Ψ(v1,v2,...,vd−1,vd)(z) =

∫ 1/2

−1/2

e2πiξ·v

1−K(ξ; z)
Φ̂(ξ; z) dnξ

=

d−1∏
j=1

e2πiΞjvj

∫ 1/2

−1/2

e2πiξdvd

1−K(Ξ1, ...,Ξd−1, ξd; z)
dξd .

(3.81)
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Thus, we let ζv(Ξ1, ...,Ξd−1; z) be defined by the Fourier coefficient z-transform given by

(3.82) ζv(Ξ1, ...,Ξd−1; z) ≡
∫ 1/2

−1/2

e2πiξdv

1−K(Ξ1, ...,Ξd−1, ξd; z)
dξd .

This gives

(3.83) Ψ(v1,v2,...,vd−1,vd)(z) = ζvd(Ξ1, ...,Ξd−1; z)

d−1∏
j=1

e2πiΞjvj

then we can see that the propagation of ζv(Ξ1, ...,Ξd−1; z) is equivalent to propagation on a sym-
metric grid graph of dimension one (as seen in section 3.4.1) with generators g0 = 0, g1 = 1, g2 = −1
and

(3.84) Ω0(z) = K0(Ξ1, ...,Ξd−1; z) , Ω(z) = K1(Ξ1, ...,Ξd−1; z) .

Thus, using eq. (3.77), the phase factor z-transform can be computed to be

(3.85) ζv(Ξ1, ...,Ξd−1; z) = S(z)

[
S(z)K0(Ξ1, ...,Ξd−1; z) + S(z) + 1

2K1(Ξ1, ...,Ξd−1; z)S(z)

]|v|
,

where

(3.86) S(z) = 2πi
∑
ξk

resξ→ξk
1

1− 2K1(Ξ1, ...,Ξd−1; z) cos(2πξ)−K0(Ξ1, ...,Ξd−1; z)
.

Since propagation on the graph is linear, the phase factor in eq. (3.85) is precisely the sum of
transfer functions between two slices of the graph in the Fourier domain at different times. That is,

(3.87) ζv(ξ1, ..., ξd−1; z) =

∞∑
t=0

F̂ (t)
v (ξ1, ..., ξd−1)z−t ,

where F̂
(t)
v is the transfer function at time delay t between two layers a distance v apart. We can

extract useful information from this function. For example, we can obtain the sum of the individual
transfer functions by taking

(3.88)

∞∑
t=0

F̂ (t)
v (ξ1, ..., ξd−1) = ζv(ξ1, ..., ξd−1; 1) .

If the propagation on the system involves interference, i.e. the transfer functions ascribed to the
edges of the graph have complex valued coefficients, we can also ask for the total power of the
transfer function at some frequency using Parseval’s identity,

(3.89)
∞∑
t=0

|F̂ (t)
v (ξ1, ..., ξd−1)|2 =

∫ 1

0

|ζv(ξ1, ..., ξd−1; e2πix)|2 dx .

If the time step is presumed to be infinitesimal then the above quantity corresponds approximately
to how much the incoming signal is damped by propagating from one slice to another slice a distance
v away.

3.6. Propagation in a Thin Layer. The problem with the model we have used until this point
is that the area in which the signal scatters is effectively infinite. But the situation we would like
to model is the propagation of light through a thin layer. We would like to imagine that a signal
enters the layer through one end and we would like to recover the signal which exists at the other
– or rather, the corresponding transfer function between these two signals. The desired scenario is
shown in figure 4.

The models we have looked at are not fully able to capture the behavior in figure 4 because any
part of the signal that leaves a region of the graph can propagate back into the region later. We
would like to find a way to stop this back propagation entirely. This can be done using the machinery
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Figure 4. The scenario we are trying to model. There is a thin layer which scatters
an incoming signal from the left side of the region. We would like to determine trans-
fer functions for the signal transmitted through the region and the signal reflected
back.

Figure 5. Scattering model in dimension one. The gray vertices denote sinks and
the orange vertex is the source vertex for a signal entering the scattering region
from the left. As per figure 4, we would like recover what exits the system at the
right end of the region, at the rightmost gray vertex.

of sinks introduced in section 3.2. Specifying a layer of the graph as the scattering region, we place
sinks at either ends of the region, as seen in figure 5. Whatever parts of the signal arrive at these
sinks are then removed from the system and will no longer propagate back into the scattering region.
Our goal is then to recover what leaves the system at either end of the scattering region (see the
discussion at the end of section 3.2). We introduce a signal at some chosen source vertex in the
graph, typically neighboring one of the sinks (see the orange vertex in figure 5). If we call this
source s and the two sinks v1 and v2, with dummy variables x1 and x2 respectively, then we want to
recover HR(z) ≡ Hv1s(z) and HT (z) ≡ Hv2s(z) from eq. (3.60), as these are the transfer functions
corresponding to the reflected and transmitted signals respectively.

Eq. (3.62) tells us that

(3.90)

[
HR(z)
HT (z)

]
=

[
Mv1v1(z) Mv1v2(z)
Mv2v1(z) Mv2v2(z)

]−1 [
Mv1s(z)
Mv2s(z)

]
.

Hence, if we let v1 = 0, v2 = D, where D is the length of the layer, then we have

(3.91)

[
HR(z)
HT (z)

]
=

[
1 L(z)D

L(z)D 1

]−1 [
L(z)s

L(z)D−s

]
,

where

(3.92) L(z) =
S(z)Ω0(z) + S(z) + 1

2Ω(z)S(z)
,

and from (3.74), we obtain

(3.93) S(z) = 2πi
∑
ξk

resξ→ξk
1

1− 2Ω(z) cos(2πξ)− Ω0(z)
.
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For models with dimension d > 1, we can use the procedure in section 3.5 to reduce to the
one dimensional case and then use eq. (3.91) to recover the transfer function F̂ (Ξ1, ...,Ξd−1; z) =
HT (ξ1, ..., ξd−1; z) from one end of the scattering region to the other. That is,
(3.94)[

HR(ξ1, ..., ξd−1; z)
HT (ξ1, ..., ξd−1; z)

]
=

[
1 L(ξ1, ..., ξd−1; z)D

L(ξ1, ..., ξd−1; z)D 1

]−1 [
L(ξ1, ..., ξd−1; z)s

L(ξ1, ..., ξd−1; z)D−s

]
,

where

(3.95) L(ξ1, ..., ξd−1; z) =
S(z)K0(ξ1, ..., ξd−1; z) + S(z) + 1

2K1(ξ1, ..., ξd−1; z)S(z)
,

and from eq. (3.86),

(3.96) S(z) = 2πi
∑
ξk

resξ→ξk
1

1− 2K1(ξ1, ..., ξd−1; z) cos(2πξ)−K0(ξ1, ..., ξd−1; z)
.

4. Scattering models with direction

One of the problems with the above models is that a signal coming into a vertex is scattered
in the same way irrespective of the incidence direction. However, some physical processes like Mie
scattering have an explicit dependence on direction, i.e. a scattered particle is more likely to continue
in the same direction than it is to reverse direction. Accounting for these types of processes requires
a non-trivial modification to the above model. We still begin with a Cayley graph G on Zd with
generators G = {g1, ..., gk}, but now we associate a transfer function Ωgh(z) to each pair of generators
g,h ∈ G with the understanding that the function Ωgh(z) is applied to a signal when it propagates
through an edge corresponding to g if it previously propagated through an edge corresponding to h.
In the state of our system, we now have to explicitly account for the direction from which a signal
enters a node. Hence, the system state is given by a tensor of functions Ψgv(z) where v ∈ Zd is the
vertex at which the signal Ψgv(z) is seen and g ∈ G is the corresponding entrance direction. The
cumulative signal seen by a vertex is then given by summing over all entrance directions,

(4.1) Ψv(z) =
∑
g∈G

Ψgv(z) .

The governing equations of the system are given by

(4.2) Ψgv(z) =
∑
h∈G

Ωgh(z)Ψhv−h(z) + Φgv(z) ,

where Φgv(z) is the input signal at vertex v and in direction g. Note that this is essentially a
propagation graph on Zd × G. Again, for each generator g ∈ G, we define the spatial Fourier
transform Ψ̂g as

(4.3) Ψ̂g(ξ; z) =
∑
v∈Zd

e−2πiξ·vΨgv(z) .

The spatial Fourier transform of the governing equations now gives

(4.4) Ψ̂g(ξ; z) =
∑
h∈G

Ωgh(z)e2πih·ξΨ̂h(ξ; z) + Φ̂g(ξ; z) .

Defining

(4.5) Ψ̂(ξ; z) ≡


Ψ̂g1(ξ; z)

Ψ̂g2(ξ; z)
...

Ψ̂gk(ξ; z)

 , Φ̂(ξ; z) ≡


Φ̂g1(ξ; z)

Φ̂g2(ξ; z)
...

Φ̂gk(ξ; z)

 .



18 PHILIP ETTER

Eq. (4.4) can then be written as a matrix equation,

(4.6) Ψ̂(ξ; z) =


Ωg1g1(z)e2πig1·ξ Ωg1g2(z)e2πig2·ξ ... Ωg1gk(z)e2πigk·ξ

Ωg2g1(z)e2πig1·ξ Ωg2g2(z)e2πig2·ξ ... Ωg2gk(z)e2πigk·ξ

...
...

. . .
...

Ωgkg1(z)e2πig1·ξ Ωgkg2(z)e2πig2·ξ ... Ωgkgk(z)e2πigk·ξ

 Ψ̂(ξ; z) + Φ̂(ξ; z) .

We define the propagator matrix K(ξ; z) as the matrix in the above expression. The solution for

Ψ̂(ξ; z) is then

(4.7) Ψ̂(ξ; z) = (I −K(ξ; z))−1Φ̂(ξ; z) .

Taking the inverse Fourier transform,
(4.8)

Ψv(z) =

∫ 1/2

−1/2

e2πiξ·v(I −K(ξ; z))−1Φ̂(ξ; z) dξ =
∑
w∈Zd

∫ 1/2

−1/2

e2πiξ·(v−w)(I −K(ξ; z))−1 dξΦω(z) ,

where Ψv(z) is the vector indexed in G, with entries Ψgv(z). From the above equation, the transfer
tensor M(z) then takes the form

(4.9) Mgh
vw(z) =

[∫ 1/2

−1/2

e2πiξ·(v−w)(I −K(ξ; z))−1 dξ

]
gh

.

Note that the tensor M(z) is indexed by v,w ∈ Zd and g,h ∈ G, and its entries represent the
transfer functions for a signal propagating from vertex w with direction g to vertex v with direction
h, i.e.,

(4.10) Ψgv(z) =
∑
w∈Zd

∑
h∈G

Mgh
vw(z)Φhw(z) .

If the system is viewed as a propagation graph on the vertex set Zd × G, then Mgh
vw(z) can be

interpreted as a matrix.

4.1. Symmetric Grids in Dimension One. In analogy to section 3.1, we would like to compute
the entries of the transfer matrix M(z) when d = 1 and when the system is symmetric. Once again,
we have generators g0 = 0, g1 = 1, g2 = −1. Furthermore, for the resulting system to be symmetric,
we must have

(4.11) Ωg,h(z) = Ω−g,−h(z) .

If we view the resulting system as a propagation graph on the vertex set Z × {−1, 0, 1}, we obtain
the propagation graph shown in figure 6.

Figure 6. Symmetric grid graph in dimension one with directional scattering. Note
that each vertex on Z (denoted by dotted circles) is expanded into three individual
vertices corresponding to scattering direction.
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To derive transfer functions, we perform an analysis similar to section 3. We would like to compute
the matrix entries M1,1

0N (z) as well as M−1,1
0N (z), since these will suffice to compute transfer functions

for propagation in a thin layer. Our method of computation relies on clever use of the symmetry of
the graph. First, consider input to the system given by

(4.12) Φgv(z) =
1

2
(δ[v]δg,1 + δ[v]δg,−1) ,

that is, we start with two half unit pulses at vertices (0, 1) and (0,−1). Due to this initial data, the
system in figure 6 is always symmetric with respect to a flip about the vertex (0, 0), which means

(4.13) Ψg
v(z) = Ψ−g−v(z) .

Thus, we define

Ssym
0 (z) ≡ Ψ0

0(z)

Ssym
1 (z) ≡ Ψ1

0(z) = Ψ−1
0 (z) ,

N sym
−1 (z) ≡ Ψ−1

1 (z) = Ψ1
−1(z) ,

N sym
0 (z) ≡ Ψ0

1(z) = Ψ0
−1(z) ,

N sym
1 (z) ≡ Ψ1

1(z) = Ψ−1
−1(z) ,

U sym
−1 (z) ≡ Ψ−1

2 (z) = Ψ1
−2(z) .

(4.14)

Looking at figure 6, we can write down expressions for the above using eqs. (4.2), these become

Ssym
0 (z) = Ω0,1(z)N sym

−1 (z) + Ω0,−1(z)N sym
−1 (z) + Ω0,0(z)Ssym

0 (z) +
1

2
,

Ssym
1 (z) = Ω1,1(z)N sym

−1 (z) + Ω1,−1(z)N sym
−1 (z) + Ω1,0(z)Ssym

0 (z) ,

N sym
−1 (z) = Ω−1,1(z)Ssym

1 (z) + Ω−1,0(z)N sym
0 (z) + Ω−1,−1(z)U sym

−1 (z) ,

N sym
0 (z) = Ω0,1(z)Ssym

1 (z) + Ω0,0(z)N sym
0 (z) + Ω0,−1(z)U sym

−1 (z) ,

N sym
1 (z) = Ω1,1(z)Ssym

1 (z) + Ω1,0(z)N sym
0 (z) + Ω1,−1(z)U sym

−1 (z) .

(4.15)

Likewise, consider the input to the system given by

(4.16) Φgv(z) =
1

2
(δ[v]δg,1 − δ[v]δg,−1) ,

that is, we start with half unit pulses at vertex (0, 1) and a negative unit pulse at (0,−1). Due
to this initial data, the system in figure 6 is always antisymmetric with respect to a flip about the
vertex (0, 0), which means

(4.17) Ψg
v(z) = −Ψ−g−v(z) .

For this set of initial data, define

Sasym
0 (z) ≡ Ψ0

0(z) = 0 ,

Sasym
1 (z) ≡ Ψ1

0(z) = −Ψ−1
0 (z) ,

Nasym
−1 (z) ≡ Ψ−1

1 (z) = −Ψ1
−1(z) ,

Nasym
0 (z) ≡ Ψ0

1(z) = −Ψ0
−1(z) ,

Nasym
1 (z) ≡ Ψ1

1(z) = −Ψ−1
−1(z) ,

Uasym
−1 (z) ≡ Ψ−1

2 (z) = −Ψ1
−2(z) .

(4.18)
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We can write down similar expressions for these functions using eqns. (4.2),

Sasym
1 (z) = Ω1,1(z)Nasym

−1 (z)− Ω1,−1(z)Nasym
−1 (z) +

1

2
,

Nasym
−1 (z) = Ω−1,1(z)Sasym

1 (z) + Ω−1,0(z)Nasym
0 (z) + Ω−1,−1(z)Uasym

−1 (z) ,

Nasym
0 (z) = Ω0,1(z)Sasym

1 (z) + Ω0,0(z)Nasym
0 (z) + Ω0,−1(z)Uasym

−1 (z) ,

Nasym
1 (z) = Ω1,1(z)Sasym

1 (z) + Ω1,0(z)Nasym
0 (z) + Ω1,−1(z)Uasym

−1 (z) .

(4.19)

Without extra information we cannot outright solve the systems (4.15) and (4.19), since the number
of unknowns is always one less than the number of equations. However, note that, from eq. (4.10),

Ssym
1 (z) =

1

2

[
M1,1

00 (z) +M1,−1
00 (z)

]
,

Sasym
1 (z) =

1

2

[
M1,1

00 (z)−M1,−1
00 (z)

]
.

(4.20)

Moreover, from equation (4.9),

(4.21) Mgh
00 (z) =

∫ 1/2

−1/2

[(I −K(ξ; z))−1]gh dξ .

For this system, the propagator takes the form

(4.22) K(ξ; z) =

 Ω−1,−1(z)e−2πiξ Ω−1,0(z) Ω−1,1(z)e2πiξ

Ω0,−1(z)e−2πiξ Ω0,0(z) Ω0,1(z)e2πiξ

Ω1,−1(z)e−2πiξ Ω1,0(z) Ω1,1(z)e2πiξ

 .
Computing the determinant of the matrix I −K(ξ; z) gives

det(I −K(ξ; z)) = −detK(ξ; z) + 1− Ω0,0(z)− Ω−1,1(z)Ω1,−1(z) + Ω−1,−1(z)Ω1,1(z)

+ e−2πiξ(−Ω−1,−1(z)− Ω−1,0(z)Ω0,−1(z) + Ω−1,−1(z)Ω0,0(z))

+ e2πiξ(−Ω1,1(z)− Ω0,1(z)Ω1,0(z) + Ω0,0(z)Ω1,1(z)) .

(4.23)

Since

(4.24) detK(ξ; z) = det

 Ω−1,−1(z) Ω−1,0(z) Ω−1,1(z)
Ω0,−1(z) Ω0,0(z) Ω0,1(z)
Ω1,−1(z) Ω1,0(z) Ω1,1(z)

 ,
and by virtue of the symmetry condition (4.11), we can write

(4.25) det(I −K(ξ; z)) = D0(z) +D1(z) cos(2πξ) ,

where D0(z) and D1(z) depend only on z and are nonzero in the typical non-degenerate case, where
all Ωg,h(z) are nonzero except perhaps Ω1,−1(z) and Ω−1,1(z). If this is the case, then eq. (4.21)
becomes

(4.26) Mgh
00 (z) =

∫ 1/2

−1/2

adj(I −K(ξ; z))gh
D0(z) +D1(z) cos(2πξ)

dξ ,

where adj denotes the adjugate matrix. We can now use the same residue calculus trick that was
introduced in section 3.1,

(4.27) Mgh
00 (z) = 2πi

∑
k

resξ→ξk
adj(I −K(ξ; z))gh

D0(z) +D1(z) cos(2πξ)
,

where ξk denote the poles of the function under in integral in eq. (4.26) in the region −1/2 < Re[ξ] <
1/2 and Im[ξ] > 0. These occur at

(4.28) ξk =
1

2π
cos−1

[
−D0(z)

D1(z)

]
,
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where the branch of cos−1 is chosen appropriately. Thus, we can use residue calculus to solve for
M1,1

00 (z) and M1,−1
00 (z). Using eq. (4.20) enables us to compute Ssym

1 (z) and Sasym
1 (z), which then

means the systems of equations (4.15) and (4.19) have the same number of equations as unknowns
and can be solved by matrix inversion. Once this has been done, we can compute

N1(z) ≡M1,1
01 (z) = N sym

1 (z) +Nasym
1 (z) ,

N0(z) ≡M0,1
01 (z) = N sym

0 (z) +Nasym
0 (z) ,

N−1(z) ≡M−1,1
01 (z) = N sym

−1 (z) +Nasym
−1 (z) .

(4.29)

Now, we use the same machinery we used in section 3.4. To compute Mg,1
N0(z) for N > 0, we use

the decomposition (3.54). We mark the vertices vi = (i, 1) for 0 < i < N with dummy variables xi
and mark vN = (N, g) with the variable xN . Since a walk must pass through all of the vertices vi
in sequence to reach the target vertex vN , the decomposition (3.54) becomes

(4.30) Mg,1
N,0(z, x) = x1x2...xNM

g,g
N,N (z, x)

[
∂

∂xN
Mg,1
N,N−1(z, x)

]
xN=0

N−1∏
i=1

[
∂

∂xi
M1,1
i,i−1(z, x)

]
xi=0

.

Furthermore, setting xi = 1 and using translation invariance of the system, we obtain

(4.31) Mg,1
N0(z) = Mg,g

NN (z)Rg(z)R1(z)N−1 ,

where

(4.32) Rg(z) =
∂

∂xN
Mg,1
N,N−1(z, 1, ..., 1, 0) .

To compute Rg(z), one can use of the expressions in (4.29), since we have

(4.33) Ng(z) = Mg,g
NN (z)Rg(z) = Mg,g

00 (z)Rg(z) .

Therefore,

(4.34) Rg(z) =
Ng(z)

Mg,g
00 (z)

,

which means

(4.35) Mg,1
N0(z) = Ng(z)

[
N1(z)

M1,1
00 (z)

]N−1

=
[
N sym
g (z) +Nasym

g (z)
] [N sym

1 (z) +Nasym
1 (z)

M1,1
00 (z)

]N−1

.

To compute transfer functions for N < 0, we mark the vertices vi = (−i,−1) for 0 ≤ i < N and
vN = (N, g). The decomposition (3.54) becomes

Mg,1
N,0(z, x) = x1x2...xNM

g,g
N,N (z, x)

[
∂

∂xN
Mg,−1
N,N+1(z, x)

]
xN=0

·
N−1∏
i=1

[
∂

∂xi
M−1,−1
−i,−i+1(z, x)

]
xi=0

[
∂

∂x0
M−1,1

0,0 (z, x)

]
x0=0

.

(4.36)

Once again setting xi = 0 and using the translation invariance of the system, we obtain

(4.37) Mg,1
N,0(z) = Mg,g

N,N (z)Lg(z)L−1(z)N−1W−1,1(z) ,

where

Lg(z) =
∂

∂xN
Mg,−1
N,N+1(z, 1, ..., 1, 0) ,

W−1,1(z) =
∂

∂x0
M−1,1

0,0 (z, 0, 1, ..., 1) .

(4.38)

Computing Wg,h(z) is fairly simple, since for N = 0, we should have

(4.39) M−1,1
00 (z) = Mg,g

00 (z)W−1,1(z) ,
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hence

(4.40) W−1,1(z) =
M−1,1

00 (z)

M1,1
00 (z)

.

Furthermore,

(4.41) Mg,1
−1,0(z) = Mg,g

00 (z)Lg(z)W−1,1(z) .

We note that

(4.42) Mg,1
−1,0(z) = N sym

1 (z)−Nasym
1 (z) ,

Therefore, it follows from eq. (4.41) that

(4.43) Lg(z) =
Mg,1
−1,0(z)

Mg,g
0,0 (z)W−1,1(z)

.

We conclude by subsituting this into eq. (4.37),

(4.44) Mg,1
N,0(z) = Mg,g

0,0 (z)
Mg,1
−1,0(z)

Mg,g
0,0 (z)W−1,1(z)

[
M−1,1
−1,0 (z)

M−1,−1
0,0 (z)W−1,1(z)

]N−1

W−1,1(z) ,

and then using eq. (4.42) and eq. (4.40),

(4.45) Mg,1
N0(z) =

[
N sym
g (z)−Nasym

g (z)
] [N sym

1 (z)−Nasym
1 (z)

M−1,−1
00 (z)

]N−1 [
M1,1

00 (z)

M−1,1
00 (z)

]N−1

.

Together, eqns. (4.35) and (4.45) give us all entries of form Mg,1
uv and Mg,−1

uv by symmetry. Entries
Mg,0
uv can be computed in a similar fashion.

4.2. Propagation in a Thin Layer. Once we have all entries of the form Mg,1
uv and Mg,−1

uv , we
can turn to examining propagation in a thin layer – the directional analogue of section 3.6. We
assume that the signal enters the layer at vertex (s, 1) and exists the layer at vertices (0,−1) and
(D, 1) where D is the depth of the layer. What exits at vertex (0,−1) is the reflected signal and
what exists at vertex (D, 1) is the transmitted signal, we call the corresponding transfer functions
HR(z) and HT (z) respectively. The same technique used in section 3.6 gives us

(4.46)

[
HR(z)
HT (z)

]
=

[
M−1,−1

00 (z) M−1,1
0D (z)

M1,−1
D0 (z) M1,1

DD(z)

]−1 [
M−1,1

0s (z)

M1,1
Ds (z)

]
.

This equation allows us to compute HR(z) and HT (z) directly. The particular case of interest is
s = 0, where the signal is introduced at the left end of the scattering layer. Then, the above becomes
(4.47)[
HR(z)
HT (z)

]
=

 M−1,−1
00 (z)

[Nsym
1 (z)−Nasym

1 (z)]
D
M1,1

00 (z)D−1

M−1,−1
00 (z)D−1M−1,1

00 (z)D−1

[Nsym
1 (z)−Nasym

1 (z)]
D
M1,1

00 (z)D−1

M−1,−1
00 (z)D−1M−1,1

00 (z)D−1
M1,1

00 (z)


−1 [

M−1,1
00 (z)
N1(z)D

M1,1
00 (z)D−1

]
,

where, from (4.27),

(4.48) Mgh
00 (z) = 2πi

∑
k

resξ→ξk
adj(I −K(ξ; z))gh

D0(z) +D1(z) cos(2πξ)
,

and

(4.49) N1(z) = N sym
1 (z) +Nasym

1 (z) ,

and N sym
1 (z) and Nasym

1 (z) are computed by solving the linear systems (4.15) and (4.19).
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4.3. Redundant Symmetric Grids in Dimension One. To perform a reduction from a general
case to the case of dimension one, we need to slightly modify the above structure. Suppose instead
of generators G = {−1, 0, 1} we instead have generators

(4.50) G = {−1, u1, u2, ..., uk, 1} ,

where u1, ..., uk are redundant copies of zero. We also still impose the symmetry conditions

(4.51) Ωg,h(z) = Ω−g,−h(z) ,

with the understanding that −ui = ui. An example of this sort of graph can be seen in figure 7,
with k = 2.

Figure 7. Redundant symmetric grid graph in dimension one with directional scat-
tering, with generators G = {−1, 0, 0, 1}. Note that each vertex on Z (denoted by
dotted circles) is expanded into four individual vertices corresponding to scattering
direction.

In this case, the propagator takes the form

(4.52) K(ξ; z) =


Ω−1,−1(z)e−2πiξ Ω−1,u1

(z) ... Ω−1,uk
(z) Ω−1,1(z)e2πiξ

Ωu1,−1(z)e−2πiξ Ωu1,u1
(z) ... Ωu1,uk

(z) Ωu1,1(z)e2πiξ

...
...

. . .
...

...
Ωuk,−1(z)e−2πiξ Ωuk,u1(z) ... Ωuk,uk

(z) Ωuk,1(z)e2πiξ

Ω1,−1(z)e−2πiξ Ω1,u1(z) ... Ω1,uk
(z) Ω1,1(z)e2πiξ

 .
With a bit of work, one can show that the determinant det(I −K(ξ; z)) takes the form

(4.53) det(I −K(ξ; z)) = D0(z) +D1(z) cos(2πξ) ,

due to the symmetry condition (4.51). This can be done by using induction and expansion of the
determinant of I −K(ξ; z) by minors along the ui, ui diagonal elements of I −K(ξ; z) and using the
determinant (4.23) as a base case. Just like in the previous section (see eq. (4.27)), this gives us an

expression for the matrix values Mgh
00 (z),

(4.54) Mgh
00 (z) =

∫ 1/2

−1/2

adj(I −K(ξ; z))gh
D0(z) +D1(z) cos(2πξ)

dξ = 2πi
∑
k

resξ→ξk
adj(I −K(ξ; z))gh

D0(z) +D1(z) cos(2πξ)
,

where ξk are the poles of the function under the integral above in the region −1/2 < Re[ξ] < 1/2
and Im[ξ] > 0. Once again, these occur at

(4.55) ξk =
1

2π
cos−1

[
−D0(z)

D1(z)

]
.

Now, we reuse the variables defined in (4.14) and (4.18), with slight alterations. Instead of defining
Ssym

0 and Sasym
0 , we define

(4.56) Ssym
ui

(z) ≡ Ψui
0 (z) ,
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when the input to the system is given by Φgv(z) = 1
2 (δ[v]δg,1 + δ[v]δg,−1). And we define

(4.57) Sasym
ui

(z) ≡ Ψui
0 (z) ,

when the input to the system is given by Φgv(z) = 1
2 (δ[v]δg,1 − δ[v]δg,−1). Using the symmetry of

the underlying graph with respect to transformations (v, g) → (−v,−g) as we did in the previous
section gives us the system of equations

Ssym
ui

(z) = Ω0,1(z)N sym
−1 (z) + Ω0,−1(z)N sym

−1 (z) +

k∑
j=1

Ωui,uj
(z)Ssym

uj
(z) +

1

2
,

Ssym
1 (z) = Ω1,1(z)N sym

−1 (z) + Ω1,−1(z)N sym
−1 (z) +

k∑
j=1

Ω1,uj
(z)Ssym

uj
(z) ,

N sym
−1 (z) = Ω−1,1(z)Ssym

1 (z) +

k∑
j=1

Ω−1,uj
(z)N sym

uj
(z) + Ω−1,−1(z)U sym

−1 (z) ,

N sym
ui

(z) = Ωui,1(z)Ssym
1 (z) +

k∑
j=1

Ωui,uj
(z)N sym

uj
(z) + Ωui,−1(z)U sym

−1 (z) ,

N sym
1 (z) = Ω1,1(z)Ssym

1 (z) +

k∑
j=1

Ω1,uj
(z)N sym

uj
(z) + Ω1,−1(z)U sym

−1 (z) ,

(4.58)

and correspondingly,

Sasym
1 (z) = Ω1,1(z)Nasym

−1 (z)− Ω1,−1(z)Nasym
−1 (z) +

1

2
,

Nasym
−1 (z) = Ω−1,1(z)Sasym

1 (z) +

k∑
j=1

Ω−1,uj (z)Nasym
uj

(z) + Ω−1,−1(z)Uasym
−1 (z) ,

Nasym
ui

(z) = Ωui,1(z)Sasym
1 (z) +

k∑
j=1

Ωui,uj
(z)Nasym

uj
(z) + Ωui,−1(z)Uasym

−1 (z) ,

Nasym
1 (z) = Ω1,1(z)Sasym

1 (z) +

k∑
j=1

Ω1,uj
(z)Nasym

uj
(z) + Ω1,−1(z)Uasym

−1 (z) .

(4.59)

Since we know that

Ssym
1 (z) =

1

2

[
M1,1

00 (z) +M1,−1
00 (z)

]
,

Sasym
1 (z) =

1

2

[
M1,1

00 (z)−M1,−1
00 (z)

]
,

(4.60)

we can solve for the remaining variables above by using the linear systems (4.58) and (4.59). Then,
using the same argument we used in the previous section, for N > 0

(4.61) Mg,1
N0(z) =

[
N sym
g (z) +Nasym

g (z)
] [N sym

1 (z) +Nasym
1 (z)

M1,1
00 (z)

]N−1

,

and likewise, for N ≤ 0,

(4.62) Mg,1
N0(z) =

[
N sym
g (z)−Nasym

g (z)
] [N sym

1 (z)−Nasym
1 (z)

M−1,−1
00 (z)

]N−1 [
M1,1

00 (z)

M−1,1
00 (z)

]N−1

.
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Transfer functions for propagation in a thin layer of depth D can then be computed exactly as we
did before,
(4.63)[
HR(z)
HT (z)

]
=

 M−1,−1
00 (z)

[Nsym
1 (z)−Nasym

1 (z)]
D
M1,1

00 (z)D−1

M−1,−1
00 (z)D−1M−1,1

00 (z)D−1

[Nsym
1 (z)−Nasym

1 (z)]
D
M1,1

00 (z)D−1

M−1,−1
00 (z)D−1M−1,1

00 (z)D−1
M1,1

00 (z)


−1 [

M−1,1
00 (z)
N1(z)D

M1,1
00 (z)D−1

]
,

where N1(z) = N sym
1 (z) +Nasym

1 (z). Now that we’ve established this machinery, we can finally look
at the reduction from higher dimensions to the one dimensional case.

4.4. Reduction to Dimension One. For our reduction to work in the directional scattering case,
we require the following,

(1) Locality : for every g = (v1, v2, ..., vd), we must have |vd| ≤ 1.
(2) Single Exit/Entry : there must exist exactly one element g1 = (v1, v2, ..., vd) in G with vd = 1

and exactly one element g−1 = (u1, u2, ..., ud) with ud = −1.
(3) Symmetry : for every g = (v1, v2, ..., vd) and h = (u1, u2, ..., ud) in the set of generators G,

there must be corresponding generators g′ = (v1, v2, ...,−vd) and h′ = (u1, u2, ...,−ud) in G.
Moreover, Ωg,h(z) = Ωg′,h′(z).

The collapse procedure is done as follows. Consider the propagation of a d− 1-dimensional plane
wave on G, that is, with input signal

(4.64) Φg(v1,v2,...,vd−1,vd)(z) = e2πiΞ1v1e2πiΞ2v2 ...e2πiΞd−1vd−1δ[vd]δg,g1 .

This initial data is a plane wave entering the scattering region at vd = 0 and moving to the right. If
we define

(4.65) Ωgh(ξ1, ..., ξd−1; z) ≡ Ωgh(z)

d−1∏
i=j

e2πihjξj ,

and enumerate the elements of G0 ≡ G \ {g1, g−1} as u1,u2, ...,uk, then the propagator can be
written as
(4.66)

K(ξ; z) =


Ωg−1,g−1

(ξ; z)e−2πiξd Ωg−1,u1
(ξ; z) ... Ωg−1,uk

(ξ; z) Ωg−1,g1(ξ; z)e2πiξd

Ωu1,g−1
(ξ; z)e−2πiξd Ωu1,u1

(ξ; z) ... Ωu1,uk
(ξ; z) Ωu1,g1(ξ; z)e2πiξd

...
...

. . .
...

...
Ωuk,g−1

(ξ; z)e−2πiξd Ωuk,u1
(ξ; z) ... Ωuk,uk

(ξ; z) Ωuk,g1(ξ; z)e2πiξd

Ωg1,g−1
(ξ; z)e−2πiξd Ωg1,u1

(ξ; z) ... Ωg1,uk
(ξ; z) Ωg1,g1(ξ; z)e2πiξd

 .
Note the similarity of this propagator to the propagator (4.52) from the previous section.

The Fourier transform of the input data is

(4.67) Φ̂g(ξ1, ..., ξd; z) = δ[ξ1 − Ξ1]...δ[ξd−1 − Ξd−1] δg,g1 .

From eq. (4.8), we have

Ψgv(ξ; z) =

∫ 1/2

−1/2

e2πiξ·v(I −K(ξ; z))−1Φ̂(ξ; z) dξ

=

d−1∏
i=j

e2πivjΞj

[∫ 1/2

−1/2

e2πiξvd(I −K(Ξ1, ...,Ξd−1, ξ; z))
−1 dξ

]
g,g1

.

(4.68)

Defining

(4.69) ζgv (Ξ1, ...,Ξd−1; z) ≡

[∫ 1/2

−1/2

e2πiξv(I −K(Ξ1, ...,Ξd−1, ξ; z))
−1 dξ

]
g,g1

,
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we can see that the solution of ζgv (Ξ1, ...,Ξd−1; z) on the above graph is equivalent to Mg,1
0,v (z) on

the graph studied in the previous section 4.3 (see the propagator 4.52), with

(4.70) Ωgh(z) ≡ Ωgh(Ξ1, ...,Ξd−1; z) .

Hence, ζgv (Ξ1, ...,Ξd−1; z) can be computed using the techniques of section 4.3. Once this has been
done, transfer functions for propagation in a thin layer can be computed using the expression (4.63).
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Appendix A. Propagation Graph Models with Random Transfer Functions

A.1. Unit Delay with Constant Real Attenuation. To begin, we consider the case where A is
simply the adjacency matrix of an Erdös-Réyni random graph multiplied by a scalar α,

(A.1) A ≡ α(n)


0 X12 X13 . . . X1n

? 0 X23 . . . X2n

? ? 0 . . . X3n

...
...

...
. . .

...
? ? ? . . . 0

 ,
where ? denotes symmetric matrix entries, and Xij are i.i.d. Bernoulli random variables,

(A.2) Xij =

{
1 : with probability p
0 : with probability 1− p .

From the previous section, we have

(A.3) T (z) = z−1A .

Systems with edge transfer matrices of the form (A.3) have impulse responses of the form

(A.4) h[t] ≡ [z−t](I − T (z))−1 = At ,

where hij [t] is the signal at node i at time t if a Dirac delta impulse δ[t] is introduced at vertex j.
If we use the spectral decomposition of A, we can write

(A.5) hij [t] =
∑
k

ΛikΛ∗jkλ
t
k ,

where the ith column of the matrix Λ is the ith eigenvector of A. From theorem (B.1), we know
w.h.p. that ρ(A) can be approximated in O(α(n)/

√
n) as

(A.6) ρ(A) ∼ N
(
α(n)(np− 2p+ 1), 2α(n)2p2(1− p2)

)
.

A.1.1. Stability. In particular, if α(n) = O(1/np), then the probability distribution (A.6) converges
to a definite value, given by

(A.7) ρ(A)→ lim
n→∞

α(n)(np− 2p+ 1) .

So, if α(n) = o(1/np),

(A.8) ρ(A)→ 0 .

And if α(n) ∼ 1/np, then

(A.9) ρ(A)→ β ,

where

(A.10) β = lim
n→∞

α(n)np .

Otherwise, if α = ω(1/np), we have

(A.11) ρ(A)→∞ .

Moreover, if the event ρ(A) < 1 happens, then all the poles of the transfer matrix (2.15) lie strictly
within the unit circle, and hence the impulse response hij [t] has finite energy by Parseval’s identity,

(A.12)

∞∑
t=0

|hij [t]|2 =

∫ 1

0

|Mij(e
2πix)|2 dx <∞ .

Thus, if limn→∞ α(n)np < 1, the system given by (A.1) is BIBO stable w.h.p. On the other hand,
if limn→∞ α(n)np ≥ 1, the system is unstable w.h.p., since it will have a pole on or within the unit
circle.
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A.1.2. Impulse Response. Now, we consider what the impulse responses of systems of the form (A.1)
look like. We can get a pretty good idea. It is here where we use the fact that the expectation of
the matrix (A.1) is nonzero and the resulting spectral gap. We can separate terms in (A.5), yielding

(A.13) hij [t] = Λi1Λ∗j1λ
t
1 +

∑
k>1

ΛikΛ∗jkλ
t
k .

Furthermore, the eigenvector corresponding to λ1 is close to the vector ~1/
√
n. (see appendix B.1).

Hence, we can reasonably assume that the term Λi1Λ∗j1 will be nonzero. In fact, it should be close
to 1. Therefore, if we define the error term,

(A.14) ε[t] ≡
∑
k>1

ΛikΛ∗jkλ
t
k ,

the impulse response can be then be written as

(A.15) hij [t] = Λi1Λ∗j1λ
t
1 + ε[t] .

Asymptotically, we expect the Λi1Λ∗j1λ
t
1 to dominate the impulse response (A.13). However, we

would also like to know how quickly this happens in practice. That is, we would like an idea of the
behavior of the quantity

(A.16) a[t] =
|ε[t]|

|Λi1Λ∗j1λ
t
1|

=
1

|Λi1Λ∗j1λ
t
1|

∣∣∣∣∣∑
k>1

ΛikΛ∗jkλ
t
k

∣∣∣∣∣ .
This quantity tells us at what point the error term ε[t] becomes negligible. To do this, consider the
operator

(A.17) B = Λ

[⊕
k>1

λk

]
Λ† .

This operator is A with the λ1 spectral component removed. By theorem (B.2), w.h.p.,

(A.18) ‖B‖ = |λ2| < 2α(n)
√
p(1− p)

√
n+O(α(n)n1/3 log n) .

But, we also have

(A.19)
∑
k>1

ΛikΛ∗jkλ
t
k = δTi B

tδj .

And therefore,

(A.20)

∣∣∣∣∣∑
k>1

ΛikΛ∗jkλ
t
k

∣∣∣∣∣ ≤ |λ2|t <
[
2α(n)

√
p(1− p)

√
n+O(α(n)n1/3 log n)

]t
.

Meanwhile, we know that hij [0] = δij . By (A.13), this tells us that

a[t] <
1

|Λi1Λ∗j1|

[
2α(n)

√
p(1− p)

√
n+O(α(n)n1/3 log n)

α(n)(np− 2p+ 1) +O(α(n))

]t

=
1

|Λi1Λ∗j1|

[
2
√
p(1− p)

√
n+O(n1/3 log n)

(np− 2p+ 1) +O(1)

]t
.

(A.21)

For large n and small t, roughly

(A.22) a[t] /
1

|Λi1Λ∗j1|

[
2

√
1− p
n

]t
.

Remember that the first eigenvector is close to the vector ~1/
√
n. So, we make the approximation

(A.23) |Λi1Λ∗j1| ≈
1

n
,
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which gives us our final approximate bound for a[t],

(A.24) a[t] / n

[
2

√
1− p
n

]t
.

This means, for large n and for t ≥ 3, we are nearly guaranteed a[t]� 1 and therefore, the error
ε[t] becomes negligible. This bound seems to agree with numerical experiments, as seen in figures (8)
and (9). In these figures, we can see the impulse response hij [t] (where i 6= j) very quickly becomes
an exponential after an initial period of silence, which lasts 2 units of time, and then a small amount
of oscillation, which lasts another 3 units of time.

Figure 8. Example impulse response hij [t] of system (A.1) for α = ε/np with
ε = 0.9, p = 0.15, and n = 200

Figure 9. Example impulse response hij [t] of system (A.1) for α = ε/np with
ε = 0.9, p = 0.15, and n = 200

A.2. Unit Delay with Bounded Random Real Attenuation. This section is simply a gener-
alization of the previous section. Here, the variables Xij ’s may have any distribution as long as the
agree with the requirements of theorem (B.1).
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A.2.1. Stability. We know

(A.25) ρ(A)→ lim
n→∞

α(n)nµ ,

where µ = E[Xij ]. Therefore, the system is stable w.h.p. if the quantity above is less than 1, and
unstable otherwise.

A.2.2. Impulse Response. The impulse response still has the form

(A.26) hij [t] = Λi1Λ∗j1λ
t
1 + ε[t] .

And like before, with σ =
√

Var[Xij ], we have

(A.27) a[t] ≡ |ε[t]|
|Λi1Λ∗j1λ

t
1|
<

1

|Λi1Λ∗j1|

[
2σ
√
n+O(n1/3 log n)

(n− 1)µ+ σ2/µ+O(1)

]t
,

leading to the approximation

(A.28) a[t] / n

[
2σ

µ
√
n

]t
.

Once again, for large n, we expect ε[t] to be small compared to Λi1Λ∗j1λ
t
1 for t ≥ 3.

A.3. Unit Delay with Random Phase Attenuation. Our original hope was to use this frame-
work to model the propagation of light through a scattering medium. In such a model, we are
interested in interference effects. To add these effects to the above model, we consider complex-
valued signals instead of real valued ones. Furthermore, we suppose that the signals pick up random
phase terms as they propagate along edges.

A.3.1. Symmetric Case. If we want our process to be reversible, then our matrix A becomes

(A.29) A ≡ α(n)


0 X12e

iφ12 X13e
iφ13 . . . X1ne

iφ1n

? 0 X23e
iφ23 . . . X2ne

iφ2n

? ? 0 . . . X3ne
iφ3n

...
...

...
. . .

...
? ? ? . . . 0

 ,
where ? now denotes conjugate symmetric entries, the Xij are i.i.d. Bernoulli random variables of
the form (A.2), and the φij are i.i.d. uniform random variables in [0, 2π]. Eq. (A.29) essentially
adds a random phase term to the matrix in (A.1). Our first order of business is to look at the
expectation of At, since it is relatively easy to compute. We have

(A.30) E[Atij ] = α(n)t
∑
i→j

E
[
Xil1 ...Xlt−2j exp

(
iφil1 + ...+ iφlt−2j

)]
,

where the sum denotes the sum over all walks il1...lt−2j from i to j of length t in Kn. Rewriting eq.
(A.30),

(A.31) E[Atij ] = α(n)t
∑
i→j

∏
k<r

E
[
Xmkr+mrk

kr

]
E [exp ((mkr −mrk)iφkr)] ,

where mkr is the number of times the edge (m, r) appears in the path. We note that, unless
mkr −mrk = 0, the E [exp ((mkr −mrk)iφkr)] term is zero. Note that at least one of these terms
must be zero if i 6= j, due to the fact that i must have one more exiting edge than entering edge.
Therefore, the non-diagonal terms of Atij for t > 0 are expected to be zero.

Matrices of the form (A.29) are Hermitian Wigner matrices with entries satisfying

(A.32) E[|Xije
iφij |2] = p .

Therefore, we know that the spectral radius converges asymptotically to

(A.33) ρ(A)→ lim
n→∞

2α(n)
√
np .
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Figure 10. Example impulse response of system (A.29) for α = 1/np with , p =
0.1, and n = 200. Since we are far below the stability threshold, the response very
quickly tapers off after t = 1.

Hence, the system is asymptotically stable if

(A.34) lim
n→∞

2α(n)
√
np < 1 ,

and unstable otherwise. Furthermore, the expression (A.5) for the impulse response of the system
still holds true and we have, for t > 0,

(A.35) hij [t] =
∑
k

ΛikΛ∗jkλ
t
k .

For large n, the operator norm of the matrix A is given by approximately 2α(n)
√
np. Therefore, we

can state approximately that

(A.36) |hij [t]| / (2α(n)
√
np)t .

In particular, if α(n) is approximately 1/np like the stability threshold in the previous scenario we
examined, and n is large, then we will get

(A.37) hij [t] ≈ 0 .

On the other hand, if α(n) is close to the stability threshold 1/2
√
np, then it is more difficult to

give an idea of what the system will do. Since there is no spectral gap like the previous scenario,
the proximity of the eigenvalues will cause the system to oscillate for a considerable amount of time
until it exhibits exponential growth or decay in the large time limit, as seen in figures (11) and (12).

The figures show the absolute values of the impulse responses. We remark that the oscillation
present is very structured, a result of the asymptotic semicircle eigenvalue distribution of the matrix
A. Because the distribution is a semicircle, there are relatively few outer eigenvalues, these tend
to dominate as t grows large and produce this oscillation due to interference between the ΛikΛ∗jk
coefficients.

A.3.2. Asymmetric Case. In the asymmetric case, we drop the assumption that our system is re-
versible and matrix A becomes

(A.38) A ≡ α(n)


0 X12e

iφ12 X13e
iφ13 . . . X1ne

iφ1n

X21e
iφ21 0 X23e

iφ23 . . . X2ne
iφ2n

X31e
iφ31 X32e

iφ32 0 . . . X3ne
iφ3n

...
...

...
. . .

...
Xn1e

iφn1 Xn2e
iφn2 Xn3e

iφn3 . . . 0

 ,
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Figure 11. Example impulse response amplitude |hij [t]| of system (A.29) at the
stability threshold α = 1/2

√
np with , p = 0.1, and n = 200.

Figure 12. Example impulse response amplitude |hij [t]| of system (A.29) at the
stability threshold α = 1/2

√
np with , p = 0.1, and n = 200.

where the Xij ’s and φij ’s are all independent and distributed as in the previous scenario (A.29),
except the matrix A is no longer forced to be Hermitian. The same analysis as in the previous
section will show that E[At] = 0 for any t > 0. Notice the diagonal terms also have expectation zero.
This is because the system is no longer reversible, so signals can no longer back-propagate through
edges as they did before. Furthermore, as long as α(n) = o(1), then asymptotically, A has the same
spectral radius as the matrix

(A.39) B ≡ α(n)


X11e

iφ11 X12e
iφ12 X13e

iφ13 . . . X1ne
iφ1n

X21e
iφ21 X22e

iφ22 X23e
iφ23 . . . X2ne

iφ2n

X31e
iφ31 X32e

iφ32 X33e
iφ33 . . . X3ne

iφ3n

...
...

...
. . .

...
Xn1e

iφn1 Xn2e
iφn2 Xn3e

iφn3 . . . Xnne
iφnn

 .
The difference between A and B is a diagonal matrix whose spectral radius is bounded by α(n).

Therefore, in the large n limit, we have

(A.40) ρ(A) = ρ(B) + o(1) .
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Figure 13. Example impulse response amplitude |hij [t]| of system (A.38) at the
stability threshold α = 1/

√
np with , p = 0.1, and n = 200.

Figure 14. Example impulse response amplitude |hij [t]| of system (A.38) at the
stability threshold α = 1/

√
np with , p = 0.1, and n = 200.

Moreover, theorem (B.5) tells us the spectral radius of B. We have

(A.41) ρ(B)→ lim
n→∞

α(n)
√
np .

Hence, the same holds for ρ(A). Curiously, the stability threshold for system (A.38) is therefore
twice that of system (A.29). This system is asymptotically stable if

(A.42) lim
n→∞

α(n)
√
np < 1 .

For large n, the operator norm of the matrix A is approximately given by α(n)
√
np. We can state

approximately that

(A.43) |hij [t]| . (α(n)
√
np)t .

For α(n) ≈ 1/np, the system behaves more or less like the system from the previous section. When
α(n) gets closer to the stability threshold, we again expect wild oscillation, as seen in figures (13)
and (14).

The difference in the oscillation of system (A.38) seen in these figures and of system (A.29) seen
in figures (11) and (12) is due to the fact that the asymptotic distribution of the eigenvalues of
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(A.38) is uniform on the unit circle. Therefore, there are comparatively more eigenvalues located at
the fringes of the spectrum, causing more erratic oscillation.

Appendix B. Spectra of Large Dimensional Random Matrices

The primary tool in the analysis of random discrete-time propagation graphs is the spectra of
random matrices. Fortunately, the topic of random matrix spectra is well-studied in the probability
theory literature. For a large number of expectation zero matrices with i.i.d. entries, both the as-
ymptotic distribution of eigenvalues and the asymptotic spectral radius as the dimension approaches
infinity are known. Knowledge of these two factors allows us to make predictions in some cases about
the properties of the transfer matrix M(z).

The two crucially important properties for us are the spectral radius of a square random matrix
A,

(B.1) ρ(A) = max
i
|λi(A)| ,

and the asymptotic distribution of the eigenvalues of A,

(B.2) µA = lim
n→∞

1

n

∑
i

δλi
,

where n is the dimension of A, and the δλi
denote the distribution of the individual eigenvalues. In

many of the cases we are interested in, the distribution µA is either an interval centered at zero on
the real line with semicircle density, or a circle centered at zero in the complex plane with uniform
density. The phenomenon of the former asymptotic distribution is commonly known as Wigner’s
Semicircle Law.

B.1. Bounded Real Symmetric Ensembles. Suppose we have a symmetric real random matrix
A, whose entries are independent, but not necessarily identically distributed. Furthermore, Suppose:

(1) The entries are all bounded by some constant B, that is |Aij | ≤ B for all i and j.
(2) The nondiagonal entries share the same expectation, E[Aij ] = µ for i 6= j.
(3) The nondiagonal entries share the same variance, Var[Aij ] = σ2 for i 6= j.
(4) The diagonal entries share the same expectation, E[Aii] = ν.

Then, we have the following theorems from [6]:

Theorem B.1. (Füredi, János) If µ = 0, we have w.h.p.:

ρ(A) = 2σ
√
n+O(n1/3 log n)

Theorem B.2. (Füredi, János) If µ > 0 then ρ(A) can be approximated in O(1/
√
n) by:

ρ(A) ∼ N
(

(n− 1)µ+ ν +
σ2

µ
, 2σ2

)
Furthermore, w.h.p.:

max
i≥2
|λi(A)| < 2σ

√
n+O(n1/3 log n)

Moreover, we know from the Semicircle law that:

Theorem B.3. (Semicircle Law) The asymptotic distribution µM of the matrix M = 1
2σ
√
n
A is

given by a Wigner semicircle distribution on the interval (−1, 1).

The class of matrices which satisfy conditions (1) through (4) includes a particular class of matrices
we are interested in, namely, the adjacency matrices of random Erdös-Rényi graphs. However, one
thing the reader should note is the presence of a spectral gap when µ > 0. When the nondiagonal
entries of the matrix are not centered, a significant gap appears in the spectrum of the random
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matrix between the first and remaining eigenvalues, as we see in theorem (B.2). Informally, the
reason for this gap becomes clear if we write the matrix A as the sum:

A = B + E[A]

Where B = A − E[A] is the random matrix which results from centering A. Then the all-

ones vector ~1 is an eigenvalue of E[A] with eigenvalue (n − 1)µ + ν. Moreover, by (B.1), ‖B‖ ≤
2σ
√
n+O(n1/3 log n). And, by the triangle inequality:

ρ(A) = ‖A‖ ≥ ‖E[A]‖ − ‖B‖ ≥ (n− 1)µ+ ν − 2σ
√
n−O(n1/3 log n) ∼ nµ

The large first eigenvalue comes from an eigenvector which is close to the vector ~1. The remaining
eigenvectors vi are therefore nearly orthogonal to ~1, so Av = (B + E[A])v ≈ Bv, and theorem (B.1)
then limits how large the remaining eigenvalues can be.

Moreover, it is also possible to show that the eigenvalues of A are concentrated about their
medians by using Talagrind’s Inequality [11].

B.2. Hermitian Wigner Ensembles. Hermitian Wigner matrices are similar to the above ensem-
bles, except non-diagonal entries are allowed to be complex. More specifically, they must satisfy the
following conditions:

(1) E[(A+
ii)

2] <∞, where A+
ii = max(Aii, 0).

(2) E[Aij ] = 0 for i 6= j.
(3) E[|Aij |2] = σ2 for i 6= j.
(4) E[|Aij |4] <∞ for i 6= j.

Then from theorem (5.1) in [8]:

Theorem B.4. The largest eigenvalue of 1√
n
A tends to 2σ as n→∞ with probability 1.

Practically, this means ρ(A) → 2σ as n becomes very large. Furthermore, Hermitian Wigner
matrices share their asymptotic eigenvalue distribution with the ensembles in the previous section,
as n→∞, the distribution converges to a semicircle.

B.3. Complex Asymmetric Ensembles with Symmetric Distribution. Another class of ma-
trices we are interested in are those where all entries of A are i.i.d. complex random variables
with:

(1) The distribution of Aij is symmetric, i.e. Aij = −Aij .
(2) E[Aij ] = 0.
(3) E[|Aij |2] = 1.
(4) E[|Aij |2+ε|] <∞ for some ε > 0

Then, from [9]:

Theorem B.5. In probability,

lim
n→∞

ρ(A)√
n

= 1

Theorem B.6. For any ε, δ > 0 and B > 0, there exists a constant C = C(ε, δ, B) > 0 such that
for any n ∈ N, where E[|Aij |2+ε] ≤ B, we have:

P(ρ(A) ≥ (1 + δ)
√
n) ≤ C

(log n)2

Furthermore, we have the circle law:

Theorem B.7. (Circle Law) The asymptotic distribution µM of the matrix M = 1√
n
A is given by

a uniform distribution on the unit circle.
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