
Recreating the Czirók One-Dimensional
Self-Propelled Particle Model

CBE 448 Independent Project

Assimakis A. Kattis

Introduction

In this project, I have tried to recreate the models constructed in the first three chapters of Yates’ paper
[4] that have as primary objective to describe the behavior of locust group dynamics. I began by simulating
discretized Brownian motion using the Euler-Maruyama integration method and continued by modelling an
SDE that approximates the experimentally observed behavior of locust movements with data that was given
in Section 2.1, using stochastic integrating techniques[1]. After recreating the behavior of this SDE along
with the associated double-well potential, I computed, using Yates’ methodology, the values for the switching
times in the alignment of the locusts that were derived in Sections 2.7 and 2.8. In order to verify my results,
I used Java to construct a simulation, similar to that performed by Yates, that measured the first passage
and mean switching times for the double-well potential model used throughout the chapter.

In recreating the data found in Section 3, I used MATLAB[2] to simulate the Czirók Self-Propelled Par-
ticle (SPP) model that Yates uses as the primary model of locust behavior. I restricted my work to one
dimension, and used the model to investigate the variation of particle alignment with Interaction Radius (IR)
and α-weighing of the different particles in the model as seen in Section 3.1. In continuing, I also applied the
Equation Free methods described in Section 2.9 to this model and managed to obtain graphs that related
the alignment ζ with the Drift and Diffusion coefficients of an underlying SDE. In computing the values of
these coefficients, I used two distinct methods. I firstly constructed artificial values for ζ in what Yates calls
Short-Term Equation-Free Analysis both for the One-Dimensional SPP model and for the Full-Interaction
SPP model. Then, I continued by using Long-Term Equation-Free Analysis by running simulations of the
Czirók model over a prolonged period of time and sampling different values of ζ to construct the drift and
potential. Finally, the two equation free methods were compared and their respective feasibilities discussed.

2 Stochastic Switching

2.1 Brownian Motion

In the this section, a method for modelling Brownian motion was demonstrated. I managed to recreate
this by discretizing time in N timesteps over the unit interval and using the randn pseudorandom Gaussian
generator MATLAB function to calculate each of the dW increments with the formula dW =

√
dtX where

X ∼ N(0, 1). I obtained the graphs in Figure 1 by using the code brownianPath.m based on[1].

Figure 1: Brownian path generated using brownianPath.m compared to that found in [4].

1



2.3 An Application of the Euler Maruyama Method

In Section 2, Yates numerically solves an SDE with the potential φ(x) = 10(x
4

4 −
x2

2 ) by using the Euler-
Maruyama method and demonstrates that its solution curve is similar to the instantaneous alignment Φt of
the locusts in the experiment described. The periodic solution that he finds can be obtained by writing the
equation in differential form with its drift and brownian terms visible.

dX(t) = f(X(t))dt+ g(X(t))dW (1)

The above are linked through the relation φ
′
(x) = − f(x)

D(x) where D is the diffusion term and follows the

relation 2D = g(x)2. In Yates’ example, the SDE had values f(x) = 10(x3 − x) and g(x) =
√

2, since the
diffusion constant had been set to 1. It should also be noted that in arriving at the numerical solution below,
I used the initial condition X(0) = 1 that was also used in the paper. The code for the numerical solution
below along with the potential used can be found in myswitch.m and is based on code found in [1].

Figure 2: The solution to the Section 2 SDE alongside the corresponding solution in [4].

I observed a difference in repeated trials between my numerical solution and that observed in [4]. The
numerical solution that I derived seems to have a more frequent switching frequency, something that can be
observed from the decreased time that it takes the solution to move between −1 and +1, accentuated above
since the axes used were of different scales. Since the drift and diffusion terms I used were the same, there
should exist no discernable difference between the two. However, in changing the potential of my SDE, I
observed a much greater similarity between Yates’ SDE and that for φ2(x) = 2.5φ(x), whose solution graph
is shown below next to the two different potentials used superimposed on the same axes.

Figure 3: On the left is the solution graph of the accentuated potential, exhibiting similar behavior to that

described by [4]. On the right are the two potentials superimposed on each other, with the steeper (red) line

denoting the higher potential

2



2.8 Moments of First Passage Time

In this section, I verified Yates’ analytical derivations of first passage time through computation and sim-
ulation. I calculated the times required based on the three different modes of approximation described in
Section 1.8 of [4] that were made using the program switchingtimes.m, obtaining the same results in the
integral computations.
I also tried to simulate first passage time using Java, but it was so that the simulation took too much time
to arrive at the solution within a reasonable bound of accuracy without having to alter the value of ∆t.
More specifically, I coded Switch.java and ran the simulation using different timesteps, all of which gave me
different bounds on the error. The result derived with the smallest timestep and largest bumber of repeats
is displayed below alongside the results from respective formulas, found in the same section.

Method of Evaluation Mean Switching Time
Average over 100,000 repeats with δt = 0.0001 3.096
Formula (2.8.4) 3.082
Formula (2.8.5) 3.313
Formula (2.8.6) 3.082

2.9 Equation-Free Analysis

In this section, I simulated the SDE that Yates uses to demonstrate the efficacy of the equation-free
method. In doing this, I followed a very similar strategy to that of Section 2.4 in [4], creating the script
eqnFreeExampleSectionTwo.m that calculates the values of the SDE and which, using the equation-free
techniques analyzed in this section, calculates approximations to the drift and diffusion terms. After doing
so for the respective ∆t values, it also numerically integrates their quotient using Euler’s Method to arrive
at values for the potential of the SDE. I have added more information on the exact methododology of the
equation-free method in Section 3.

3



Figure 4: Above can be seen, on the left, the plots from [4] in comparison to those that I derived using the
same equation-free techniques. The first four plots show the solutions for f and D respectively when
δt = 0.1, while the next two show the same for δt = 0.00001. Finally, the derived potentials are also shown
above, where the most accurate values for f and D found previously were numerically integrated to arrive
at the potential. Similarly to Yates, I chose a constant of integration such that the graph of the analytical
and the equation-free solution coincided. The blue here denotes the analytical while the red the
equation-free solution.

4



3 Self Propelled Particle Models

3.1 Variation of Alignment with Interaction Radius

In this section, I built the core of the Czirók SPP model. I began by coding the scripts Q.m and G.m that
modeled the respective functions defined for the model. I fixed the values of the two constants to those
used by Yates throughout the paper at β = 1 and ξ = 3 [4] but allowed for the modification of the latter,
with the Q(∆t) function being defined for ξ = 3

√
∆t as is mentioned later on in the paper. I did this

because modifying the timestep in the simulation is something that becomes important when dealing with
the equation free apects of the simulation. When creating the random variable Q(x), I made use of the
formula below for a uniform random variable defined between a and b while defining ξ with respect to time.

X = b+ (b− a)U (2)

where U ∼ U(0, 1) and X ∼ U(a, b) with U(0, 1) being modelled by the rand function.
In terms of the model itself, I created a script czirok.m that emulated its behavior with all of the given

parameters variable. I created it by firstly initializing the positions of the particles pseudorandomly uniformly
on the space and using Q(∆t) to assign random values to the initial velocities, since no specification was
made by Yates in the paper on initial velocity. In checking whether these initial conditions made a difference
to the overall behavior, I also checked for behavior with zero initial velocity, but did not find any serious
differences between the two. The model was programmed to output the values of the positions and velocities
of all the given points in array form while also returning a value for ζ at each given timestep.

I then investigated the values for ζoverall that my simulation returned while varying r at increments of
0.5, where

ζoverall =

∑N
i=N

2 +1 |ζ(i)|
N
2

(3)

a measure of the overall alignment observed for a specific simulation over a discrete finite period of time[4].
I created a function zetaOverall.m that ran the simulation once at specified parameters and returned the
associated ζoverall value. I then ran this through the script fig31.m for specified increments of r values and
for a fixed number of repetitions. I initially performed the simulation 10 times for each r but realized that
the uncertainty was too high to give me smooth enough results. After working at different values for the
repetitions while keeping the values for the rest of the parameters as specified in Section 3.1, I observed that
for an average of 500 repetitions at each point value the simulation provides data that is extremely accurate
with respect to that observed in [4]. The two graphs are shown below for comparison.

Figure 5: On the left is the plotted overall alignment calculated by averaging over 500 repetitions at different
values of r using the script fig31.m and on the right is the plot found in [4].

5



3.2 One-Dimensional Model

After analyzing the variation of ζoverall with r, I looked at the extent to which the model could be improved
by investigating the extent to which the influence of a particle’s own velocity on itself affects the overall
behavior of the model. Because this is unrealistic and due to the fact that the initial update equation for
each particle always takes itself into account, a model where this is avoided needs to also be constructed. To
do this, I noted the generalized one dimensional model defined by Yates in this section[4] which introduced
a weighting parameter α to the velocity update equation. This parameter defined the extent to which a
particle takes its own velocity into account. The generalized equation is shown below.

ui(t+ ∆t) = ui(t) + ∆t[G(
α

n(t) + α
ui(t) +

1

n(t) + α
[
∑
j∈r

uj(t)− ui(t)])− ui(t)] + ∆Q (4)

The function n is defined with respect to the number of neighbors of particle i excluding itself.

n(t) = |r| − 1 (5)

It should also be noted that, in order to both more accurately simulate the results observed in the paper
and deal with a specific corner case in a way that would make sense on a physical level, I decided to assume
that, for n(t) = 0 and α = 0, the update equation would be given by ui(t + ∆t) = ui(t) + ∆Q, since there
would be no interactions with any neighboring particles.

Based on this refined model, I created two new functions, czirokAlpha.m and zetaOverallAlpha.m that
generalized the previous model by adding the α parameter to the simulation and calculating the ζ and ζoverall
values respectively for a simulation. Then, I created the script alphaIR.m which calculated the change in
ζoverall as a function of α and r, creating a surface plot of the results, displayed below. In order to arrive
at more accurate values for ζoverall, I decided to repeat its calculation at each value of α and r 100 times
and to plot the mean of the results. The smoothness of the plot and the lack of deviation across α agrees
with Yates’ conclusion that this parameter does not substantially influence the long term behavior of the
model[4].

Figure 6: Above on the left is the surface plot I obtained by running the simulation with czirokAlpha.m 100 times
for each value of α and r and on the right is the same plot as seen in [4].

3.3 Application of the Equation-Free Method to the One-Dimensional Model

Using the model that I built in czirok.m (with α = 1) I used the initial conditions specified by Yates to
simulate the behavior of ζ with respect to time. I simply let the above script run with r = 4, dt = 1 (which
implies ξ = 3) and for 30 particles on a length 90 domain, giving a value of ρ = 1

3 for the density. In running
the simulation, I used the script figure34.m, which executes czirok.m for the above parameters over a time
period T = 2000 and subsequently plots the values of ζ(t) and xi(t) versus time. The results that I got from
this mirror those observed in [4], also shown here for comparison.

6



Figure 7: On the left are the plots found in [4] and on the right are the same graphs that I obtained through the
script figure34.m. The graphs on the top model the positions of the particles at each time step, showing a definite
alignment in the positionis with time, while the bottom graphs model the value of ζ with time, clearly
demonstrating its periodic nature. These graphs draw direct links between the behavior of the Czirók model and of
the SDE modelled in Section 2.

The next graph that I generated involved a minor modification of the second figure above. I changed the
initial conditions in the model so that the SDE I was modelling would have a density ρ = 1, showing what
the qualitative difference is in increasing the density from ρ = 1

3 . This change involved setting the parameter
N = 90. The graph I obtained is shown below, alongside that found in[4] for comparison.

Figure 8: On the left is the graph obtained by Yates in setting the density of particles to ρ = 1, while on the right
is the corresponding graph that I obtained from my model. Both graphs exhibit no switiching in the values of ζ,
which remains relatively constant in both of the simulations.

7



However, it should be noted that, unlike the behavior that was observed by Yates in setting ρ to 1, namely
that there is never any switching[4], I noticed that in my model, the SDE does undergo switching, but this
happens much less than for the case of ρ = 1

3 . I have included a graph of this instance below.

Figure 9: Above can be seen an instant where my SDE modelled with ρ = 1 undergoes switching between its two
potential wells in contrast to the analogous behavior described in [4].

These graphs indicate that the behavior of ζ can be modelled by an SDE of the form of (1), with a double
well potential φ(x). In assuming this, equation free techniques can be utilized to find this potential and
model the behavior of the SDE.

In order to do this, I followed Yates’ technique in generating artificial values for the positions and velocities
for each of the particles such that the respective value for ζ can be fixed from the beginning (see footnote
on p.37 of [4]). I used values of N = 30 and L = 90 for the model and, by fixing ζ, I randomly distributed
the points in the domain. Then, I set their velocities to equal ζ, adding N

2 pseudorandomly generated noise

terms to each of the first N
2 particles and subtracted the same noise terms from the rest. This ensured that

ζ for this initial state was fixed and its derivative was then able to be computed. The theoretical basis for
this method lies in the following limits, derived in Section 2.9 of [4].

f(X) = lim
δx→0

〈
X(t+ δt)−X(t)

δt

〉
(6)

2D = g(X)2 = lim
δx→0

〈
[X(t+ δt)−X(t)]2

δt

〉
(7)

However, I had to choose the values for δt with care, depending on whether I was evaluating f or D. This was
because, as is explained in Section 2.9 of [4], although the above limits hold, we cannot numerically compute
them, and therefore the values for δt matter most when we are trying to approximate the drift and diffusion
terms. More specifically, a larger value for δt would ensure that the noise terms of the diffusion matter less
in the overall computation, and therefore this is ideal for an approximation to the drift f . Similarly, smaller
values for δt would allow for a much more accurate determination of the diffusion.

I created a function called eqnfreeShort.m that took as inputs a value for ζ, the parameters that defined
the simulation, namely L, N , r and δt, and a parameter repeats, which set the number of times that the
simulation would be repeated in going from t to t + δt. I also added an internal variable that I called
calibration, which had as its purpose to cut the timestep δt into smaller dt values so that the simulation
would be more refined and accurate. I added this value because I noticed that its introduction allowed for a
much better simulation of D. I set it to 10 after experimenting with different values. Using these variables,
the function constructed an artificial starting point for the simulation which had a known ζ value by using

8



the aforementioned construction. After the completion of each simulation, I stored the derived value of ζ in
an array, using this along with equations (6) and (7) to derive the values for f and g in the end, which were
then returned.

I also created a script, czirokeqnfreeShort.m, that allowed for the modification of the values in the
previous function and, using these as tools, I was able to simulate values for the drift and diffusion terms of
the model. I found that choosing δt = 1 with calibration set to 1 allowed for a smooth approximation to
the drift, plotted below. The number of repeats was set to 100 and I sampled values for ζ between -1.5 and
1.5 at increments of 0.005 in both graphs below. It should be noted, however, that in calculating the drift
D, I used a value of δt = 0.01 alongside a calibration of 10 in order to get the required graph. In trying with
larger timesteps, I noticed that the graph of D became very affected by the values of f , spiralling upwards
on the sides. This is in line with the behavior outlined by [4] in Section 2.9.

Figure 10: On the top are the approximations to the diffusion coefficient D found through short term equation
free methods by Yates in[4] (left) and through my script czirokeqnfreeShort.m (right). On the bottom can also be
seen the respective approximations to the drift of the assumed underlying SDE.

After calculating the approximations to the drift and the potential above, I was able to integrate them to
arrive at the value for the SDE’s potential. I followed Yates’ methodology in doing this (Section 2.9 of [4])
by using the exact relation between drift, the diffusion constant and the potential, shown below.

−φ′(x) =
f(x)

D(x)
(8)

Using the discrete values that I had derived for f and D, I used Euler’s method to numerically integrate the
above expression to arrive at the potential of the assumed SDE, using the same timestep as before, namely
∆ζ = 0.005.

9



Finally, I also used the equation given in [4], Section 2.6, to compute the Stationary Probability Distri-
bution curve of the derived potential, shown below. This was plotted against a normalized histogram[3] of
data for ζ obtained by running the simulation over a long period of time, with ∆t = 1 and T = 100000.
Unfortunately, I was unable to simulate the behavior of the model for a larger value of T given constraints
in the runtime of my program. However, the qualitative similarities can still be observed. In normalizing
the histogram, I used the script histnorm.m[3] alongside the values for ζ obtained over the course of the
simulation.

Ps(z) =
exp[−φ(z)]∫

R exp[−φ(z)]dz
(9)

Figure 11: On top are the equation free potentials derived by Yates (left) and by using the above methodology
(right). Notice the substantially higher potential that I found around zero. On the bottom can be seen the
equivalent Stationary Probability Distribution (red) plotted against a histogram of data derived from allowing the
simulation to run for a long time.

10



3.4 Application of the Equation-Free Method to the Full-Interaction SPP Model

In this section, I recreated a specific model that Yates simulates and compared my derivations to their
corresponding analytical solutions. In the full interaction SPP model, the value for the radius is changed
to equal L

2 so that all of the particles interact with each other throughout their movement. This leads
to interesting effects that can be modelled by an analytical solution that Yates derived explicitly for the
Potential and the Stationary Probability Distribution. They are shown below.

φ(ζ) =
12Nβ

ξ2(1 + β)
(ζ2 − 2|ζ|) (10)

Ps(ζ) = C−1exp[−φ(ζ)] (11)

where C =
∫ +∞
−∞ exp[−φ(ζ)]dζ.

Using the above as benchmark solutions, I applied the equation free techniques outlined in the previous
chapter to the same model, with the only difference that I had to take r = L

2 and α = 0. After running some
initial simulations, I decided to repeat the simulations 100000 times with a timestep of δt = 1 for calculating
the drift and δt = 10−5 for the diffusion. The final values for each are shown on the two graphs below and
can be seen to be fairly accurate. I ran the simulations using the script FIsecscript.m and the function
FIsec.m.

Figure 12: From top to bottom can be seen the derived drift term, diffusion coefficient, stationary probability
distribuition, and potential. It should be noted that the last two also have the analytical solution expected plotted
on the graph for comparison. I decided to choose a starting point for the potential which would allow for a good
comparable analysis between it and the analytical solution, opting for φ(−1.5) = −15. The main reasons for error
here seem to stem from the integration of the parameters. I used Euler’s Method to integrate the points with
dζ = 0.005 but was unfortunately unable to refine this timestep, since doing so would make the simulation take a
prohibitive amount of time.

11



3.5 Long Term Equation-Free Analysis

In this section, I recreated the derivations of the drift and diffusion without the artificial fixing of ζ. As
explained by Yates, due to the artificial nature of setting specific values for each of the particles in a simu-
lation, it is more desirable to try and model the behavior of ζ without having to alter the values of position
and velocity. In this section, Yates overcomes the difficulty in generating explicit values for ζ by running a
simulation of the Czirók model over a long time, obtaining data for ζ, X and U at each timestep, which was
chosen as ∆t = 1. Using this data, he samples different values for ζ with ’natural’ values for position and
velocity, progressing through the rest of the simulation in the same fashion as in Section 3.4.

In order to recreate this method, I ran the same simulation of the model, but I chose to do so only
for 100000 timesteps, as opposed to Yates’ 1000000. I did this mainly due to the prohibitive timeframe
associated with running the simulation for more time. In light of this, deviations between the two models
in this section should be expected, especially in terms of accuracy of values in the fringes of the ζ range.
This is because the simulation rarely allows for values of |ζ| > 1.2, and thus it is much harder to sample
those points at high accuracy. This is a problem that I observed in my results, especially with respect to the
diffusion coefficient. The parameters that I used in the long term simulation were the same as Yates’ and as
in previous sections, with ∆t = 1. The full set of values included a ζ array and two 30 by 100000 matrices
X and U , corresponding to the position and velocity.

I created the script sortNsampleRep.m to sort the simulation data set and sample it at discrete in-
crements of ζ, using these values to run the model a set number of times and thus compute the drift and
diffusion terms using equation-free techniques. I managed to do this by first discretizing the ζ interval,
using an increment value of 0.005 into equally sized domains. This was decided on based on a tradeoff
between computability and accuracy, since smaller values made the scripts too slow. Then, I used the histc
function to define and construct an array that contained the index of the domain in which each of the ζ
values belonged, where the domains were numbered in increasing order. Using this, I then chose each domain
individually and, by using the find function on the previous array, created an array of all ζ values it included
and sampled it. Then, I proceeded to run the simulation for each of the sampled points for a set number of
times. To do this, I created the function eqnfree.m which took as inputs the ζ, X and U values and ran the
simulation from there. By taking averages in the end, I was able to obtain approximations to the long-term
drift and diffusion. These are shown below alongside the corresponding solutions in Yates’ paper.

Figure 13: Above can be seen the plots derived for the long-term equation-free analysis using the script
sortNsampleRep.m and the function eqnfree.m.

12



Figure 14: In this figure are plotted the contrasts between the long-term (red) and short-term (blue) equation-free
methods. The graphs found in the paper are shown on the left while those that I constructed are on the right. The
final two figures show the calculated potentials for the assumed underlying SDEs of the model for each method of
analysis. Histogram plotted using [3].

In the data observed above, the most striking difference can be seen for the diffusion, which diverges
rapidly for ζ > |1.2|. I attributed this to the fact that I did not let the initial simulation run for enough time,
and therefore the sampling at the areas outside of the two basins of potential did not provide an accurate
enough indication of the actual diffusion. However, another source of this error could be that the timestep for
the approximation to the diffusion was too high. Indeed, I encountered problems when bringing the timestep
below 10−3 as the values for the diffusion, although substantially more uniform, began to increase in value
by an order of magnitude for each power of 10 that I refined my timestep. I tried cutting up the timestep
to equally spaced sub-timesteps of vaying orders (as was done with the calibration variable previously) but
this did not help me refine my results. Therefore, this could have also contributed in the stark deviation
from Yates’ results.

13



4 Conclusions

In using the described simulation techniques, I was able to recreate most of the data that Yates provided
and to a level of accuracy that retained the qualitative behaviors of each model. The biggest problems in the
modelling that I encountered were two and involved both the way that I approached the level of accuracy and
also how I used numerics in computing the final solutions. These, alongside comments on how I attempted
to deal with them, are briefly described below.

To begin with, I had an issue with the potentials that were derived because, albeit smooth, their values at
the middle peak were much higher than anticipated in a way that would seriously affect the switching times
of the models. Indeed, when using Yates’ derived analytical approximations to find the initial switching
times for my potentials, I got values that were orders of magnitude above what I had expected. In order to
test out whether the potential that I was using indeed had larger switching times than Yates’ (and therefore
was a different model), I performed a simulation using czirok.m similar to the one coded for in Switch.java.
I found that the simulated switching times were of the same order of magnitude as those discovered by
Yates and that the issue lay in the way that I had computed the potential. In looking for my source of
error, I assumed that the problem was created in my approximate values for δζ, so I decided to calculate
the potential for the SDE modelled in Section 2 by varying the values of δx to see what a simpler model
would behave like under such conditions. I discovered that this also gave me a higher potential around the
values for zero. Therefore, I attribute this error to the numeric intergration that I performed in finding the
potentials, since this seems to have overestimated the value for the integral.

Finally, my simulation of the long-term equation-free analysis suffered from the serious drawback that it
did not have enough points in the edges, and so sampling over repeated times had little effect in approximating
the average changes in ζ. This problem can be resolved by sampling over more points, as was done in [4].
Furthermore, as noted in the previous section, I encountered a problem when minimizing the time-step of
the simulation, which could also have resulted in the inaccuracies observed. This is particularly plausible
because in the areas where the diffusion diverges, we have a large value for |f |, which influences greatly the
behavior of diffusion as described in Section 2.9 of [4].

14



References

[1] Desmond J Higham. An algorithmic introduction to numerical simulation of stochastic differential equa-
tions. SIAM review, 43(3):525–546, 2001.

[2] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.

[3] Arturo Serrano. Normalized histogram. http://www.mathworks.com/matlabcentral/fileexchange/

22802-normalized-histogram, May 2013.

[4] Christian A Yates. On the dynamics and evolution of self-propelled particle models. PhD thesis, University
of Oxford, 2007.

15


