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1. Overview

The Grothendieck problem over the orthogonal group is given by the following optimization problem:

(1.1) max
O1,...,On∈O(d)

Tr

 n∑
i,j=1

OiO
T
j Cij


where Cij is the ijth d × d block of a symmetric matrix C ∈ Rnd×nd and O(d) is the d-dimensional
orthogonal group [2].

This problem is NP-hard, so there is no known algorithm to determine the solution in polynomial
time. Instead we seek to compute an approximate solution in polynomial time. One strategy for
accomplishing this, first pioneered by Goemans & Williamson in Ref. [3], is to employ a semidefinite
relaxation. This technique consists of three steps: first construct a related problem that is a semi-
definite program (and hence can be solved in polynomial time), then solve this problem, and finally
develop a polynomial time procedure to round this solution back into a valid input to the original
problem that achieves some fraction of the optimal objective value.

Ref. [2] considers the special case of Problem 1.1 called the little Grothendieck problem, in which the
additional assumption that C is positive semidefinite is imposed. This case encodes several important
optimization problems, such as the Procrustes problem and Global Registration. Ref. [2] develops a
rounding procedure that produces a randomized solution whose expected objective value is at least a
positive constant (the approximation ratio) times the objective value of the original problem. Their

approximation ratio for all values of d exceeds the previous best known result of
1

2
√

2
from Ref. [4],

and their algorithm is much simpler and more efficient.

However in some applications (e.g. Orthogonal Synchronization) it is not appropriate to assume that
C � 0, so we would like to develop constant factor approximation ratios in other cases as well. In this
paper we consider the following case of Problem 1.1, called the bipartite Grothendieck problem:

(1.2) max
O1,...,On,U1,...,Un∈O(d)

Tr

 n∑
i,j=1

OiU
T
j Cij


If the matrix C is bipartite (i.e. is the adjacency matrix of a bipartite graph), then Problem 1.1 can
be written in this form with the appropriate renaming of variables, so Problem 1.2 is a special case
of Problem 1.1. One potential method for converting a problem of interest into bipartite form is to
force C to be bipartite by disregarding up to half of the data.
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In fact, we consider the following generalization of Problem 1.2 (for d ≤ r):

(1.3) max
O1,...,On,U1,...,Un∈O(d,r)

Tr

 n∑
i,j=1

OiU
T
j Cij


where O(d, r) =

{
O ∈ Rd×r |OOT = Id×d

}
is the Stiefel manifold. This can encode the Common-

Lines problem from Cryo-electron microscopy (see Ref. [2] for a discussion).

In Section 2 we develop a (randomized) polynomial-time rounding scheme for this problem that
achieves a constant factor approximation ratio. In Section 3 we consider a specific instance of this
rounding scheme and calculate the corresponding approximation ratio. We find that our ratio exceeds

the ratio of
1

2
√

2
from Ref. [4] (which is applicable to this problem) in some cases. Furthermore our

procedure is simpler and more efficient than their algorithm. Finally in Section 4 we discuss future
work.

2. Constant-Factor Approximation Ratio

We begin by posing the following relaxation of Problem 1.3:

(2.1) max
V1,...,Vn,W1,...,Wn∈O(d,2nd)

Tr

 n∑
i,j=1

ViW
T
j Cij



Letting Y = [V T1 . . . V Tn WT
1 . . . WT

n ], X = Y TY , and D =

[
0 C
C 0

]
, we see that Problem 2.1 is

equivalent to

(2.2) max
X∈R2nd×2nd

X�0
Xii=Id×d

Tr (DX)

so it is a semidefinite program. By Ref. [5], any semidefinite program can be solved with arbitrarily
small error in polynomial time. Let ωSDP denote the optimal value of this problem.

In the following definitions and results we explain our rounding scheme and approximation ratio. Our
technique is a generalization of the one used by Alon and Naor in Section 4 of Ref. [1] for the case of
d = 1.

Definition 2.1. An orthogonal rounding procedure is a map J that assigns to each V ∈ O(d, 2nd) a
random matrix J(V ) ∈ Rd×r such that the following three properties are satisfied:

(1) E
[
J(V )J(W )T

]
= VWT for all V,W ∈ Rd×r.

(2) There exists M > 0 such that γ(M,d, r) = 2

∫ ∞
M

P {‖J(V )‖∞ ≥ t} (t −M)dt <
1

4
(where

‖·‖∞ denotes the spectral norm).

(3) J is computable in polynomial time in the size of the input.
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Definition 2.2. For an orthogonal rounding procedure J and a real number M > 0, the truncated
orthogonal rounding procedure JM is defined by

JM (V ) =


J(V )

M
‖J(V )‖∞ ≤M

J(V )

‖J(V )‖∞
‖J(V )‖∞ > M

Before turning to the main result (Theorem 2.5), we first show the following two lemmas:

Lemma 2.3. For V ∈ O(d, 2nd),

E
[∥∥J(V )−MJM (V )

∥∥2
∞

]
= γ(M,d, r).

Proof.

E
[∥∥J(V )−MJM (V )

∥∥2
∞

]
= E

[(
(‖J(V )‖∞ −M)

+

)2]
=

∫ ∞
0

P
{(

(‖J(V )‖∞ −M)+

)2
≥ u

}
du

=

∫ ∞
0

P
{
‖J(V )‖∞ ≥M +

√
u
}
du

= 2

∫ ∞
M

P {‖J(V )‖∞ ≥ t} (t−M)dt

= γ(M,d, r)

�

Lemma 2.4. Suppose that A1, . . . , An, B1, . . . , Bn ∈ Rd×r are random variables such that

E
[
AiA

T
i

]
� αId×d and E

[
BjB

T
j

]
� βId×d.

Then

E

Tr

 n∑
i,j=1

AiB
T
j Cij

 ≤√αβ ωSDP .
Proof. Let Ãi =

1√
α
Ai, B̃j =

1√
β
Bj , G = [ÃT1 . . . Ã

T
n B̃

T
1 . . . B̃Tn ], H = GTG, and

ω′ = E

Tr

 n∑
i,j=1

AiB
T
j Cij

 .
Using the notation of Problem 2.2, we have

ω′ =
√
αβ Tr (D · E [H]) .

Next we claim that (E [H])ii � Id×d and E [H] � 0.
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First, if i ≤ nd then (E[H])ii = E [Hii] = E
[
ÃiÃ

T
i

]
� Id×d by the assumption that E

[
AiA

T
i

]
� αId×d,

and if nd < i ≤ 2nd then the same result holds by the assumption on the Bj ’s. Also, E[H] � 0 because
H � 0 always and the set of positive semidefinite matrices is convex.

Now recalling Problem 2.2, we see that

ωSDP = max
X∈R2nd×2nd

X�0
Xii=Id×d

Tr (DX)

Because Dii = 0d×d, this may be rewritten as

ωSDP = max
X∈R2nd×2nd

X�0
Xii�Id×d

Tr (DX)

But we have seen that E[H] is a valid input to this problem with objective value
ω′√
αβ

, so

ω′√
αβ
≤ ωSDP .

�

Theorem 2.5. Let V1, . . . , Vn,W1, . . . ,Wn ∈ O(d, 2nd) constitute a solution to Problem 2.1, and let
ωSDP denote the optimal value of the problem. Also let J be an orthogonal rounding procedure and
M > 0, and let

β(M,d, r) =
1− 2

√
γ(M,d, r)

M2

where γ(M,d, r) is as in Definition 2.1.

Then

E

Tr

 n∑
i,j=1

JM (Vi)J
M (Wj)

TCij

 ≥ β(M,d, r)ωSDP

This can be optimized by taking β(d, r) = max
M>0

β(M,d, r).

Because all singular values of JM (Vi), J
M (Wj) are at most 1 and the objective function is linear

in these variables, they can be transformed to elements of O(d, r) without decreasing the objective
value. Also, condition (2) from Definition 2.1 ensures that β(d, r) > 0. Therefore this provides a
polynomial-time constant factor approximation algorithm for Problem 1.3.

Proof. By condition (1) of Definition 2.1, we see that
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ωSDP = Tr

 n∑
i,j=1

ViW
T
j Cij


= E

Tr

 n∑
i,j=1

J(Vi)J(Wj)
TCij


= M2E

Tr

 n∑
i,j=1

JM (Vi)J
M (Wj)

TCij


+ E

Tr

 n∑
i,j=1

(J(Vi)−MJM (Vi))MJM (Wj)
TCij


+ E

Tr

 n∑
i,j=1

J(Vi)(J(Wj)−MJM (Wj))
TCij



Therefore it suffices to show that

E

Tr

 n∑
i,j=1

(J(Vi)−MJM (Vi))MJM (Wj)
TCij

 ≤√γ(M,d, r)ωSDP

and

E

Tr

 n∑
i,j=1

J(Vi)(J(Wj)−MJM (Wj))
TCij

 ≤√γ(M,d, r)ωSDP .

For the second inequality, we see by condition (1) of Definition 2.1 that

E
[
J(Vi)J(Vi)

T
]

= ViV
T
i = Id×d � 1Id×d,

and by Lemma 2.3 we have that

E
[(
J(Wj)−MJM (Wj)

) (
J(Wj)−MJM (Wj)

)T ] ≤ γ(M,d, r)Id×d.

The desired inequality then follows by Lemma 2.4.

The first inequality follows in a similar fashion, upon noting that
∥∥MJM (V )

∥∥
∞ ≤ ‖J(V )‖∞.

�

3. Gaussian Rounding

In this section we consider the particular rounding procedure

J(V ) = V R
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where R ∈ R2nd×r has i.i.d N (0,
1

r
) entries.

Lemma 3.1. J is an orthogonal rounding procedure.

Proof. We immediately see that

E
[
J(V )J(W )T

]
= E

[
V RRTWT

]
= V E

[
RRT

]
WT = V I2nd×2ndW

T = VWT

so condition (1) in Definition 2.1 is satisfied.

Also J is computable in polynomial time in the size of V , so condition (3) is satisfied.

For condition (2), we will provide an explicit bound for γ(M,d, r).

First let V T = QT be the QR-decomposition of V T , where Q ∈ O(2nd) and T ∈ R2nd×d is upper
triangular. Letting T1 be the top d × d block of T , we note that all other entries of T are 0. Then
since T1 is upper triangular and TT1 T1 = TTT = TTQTQT = V V T = Id×d, we see that T1 is in fact
diagonal with all diagonal entries equal to ±1. We may further assume that T1 = Id×d by modifying
Q to correct all the −1’s.

By the rotational invariance of the Gaussian, it follows that

J(V ) = V R = V QQTR = TTQTR ∼ TTR = R1

where R1 is the first d× r block of R, so

γ(M,d, r) = 2

∫ ∞
M

P {‖R1‖∞ ≥ t} (t−M)dt

Now from Ref. [6] we have that

P {‖J(V )‖∞ ≥ t} = P {‖R1‖∞ ≥ t} ≤ 2e−
(
√
r(t−1)−

√
d)2

2

for all t ≥ 1 +

√
d

r
.

Therefore for M ≥ 1 +

√
d

r
,

γ(M,d, r) ≤ 4

∫ ∞
M

e−
(
√
r(t−1)−

√
d)2

2 (t−M)dt =
2

r

(
2e−

φ2

2 −
√

2πφ

(
1− erf

(
φ√
2

)))
where φ = (M − 1)

√
r −
√
d. Therefore γ(M,d, r)→ 0 as M →∞, so condition (2) is satisfied.

�

By Theorem 2.5, we conclude that this rounding procedure provides an approximation ratio of

β(d, r) = max
M>0

1− 2

√
2

∫ ∞
M

P {‖S‖∞ ≥ t} (t−M)dt

M2
= max
M>0

1− 2

√
E
[(

(‖S‖∞ −M)
+

)2]
M2

where S ∈ Rd×r has i.i.d N (0,
1

r
) entries.
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From the discussion in Lemma 3.1, we obtain a lower bound of

(*) β(d, r) ≥ max
M≥1+

√
d
r

1− 4√
r

√
e−

φ2

2 −
√

π
2φ
(

1− erf
(
φ√
2

))
M2

where φ = (M − 1)
√
r −
√
d.

For any fixed d this bound converges to 1 as r → ∞, and for d = r → ∞ this bound converges to
1

4
. This immediately shows that for any fixed d, β(d, r) ≥ 1

2
√

2
for all but finitely many r (although

we suspect that β(d, d), which is the ratio for the bipartite problem over the orthogonal group, never

exceeds
1

2
√

2
).

In fact we do not need this lower bound when d = 1, because in this case it is easy to explicitly
compute β(1, r). Indeed when d = 1,

√
r ‖S‖∞ has the distribution χ(r), so

P {‖S‖∞ ≥ t} = 1− P
(
r

2
,
rt2

2

)

where P (s, x) =
γ(s, x)

Γ(s)
=

∫ x
0
us−1e−udu∫∞

0
us−1e−udu

is the regularized Gamma function.

Therefore

(†) β(1, r) = max
M>0

1− 2

√
2

∫ ∞
M

(
1− P

(
r

2
,
rt2

2

))
(t−M)dt

M2

Using (†) when d = 1 and (*) when d > 1, we obtain the following table:

d/r 1 2 3 ∞
1 0.267379 0.407071 0.495159 1
2 - 0.056329 0.078930 1
3 - - 0.070617 1
∞ - - - 0.25

The values for (d, r) = (2, 2), (2, 3), and (3, 3) are lower bounds for β(d, r), and it appears that they
are quite loose. By running a Monte-Carlo simulation on the expression

β(d, r) = max
M>0

1− 2

√
E
[(

(‖S‖∞ −M)
+

)2]
M2

we recover the following approximate values:
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d/r 1 2 3
1 0.2674 0.4071 0.4952
2 - 0.2419 0.3092
3 - - -

4. Future Work

In the future we plan to compute more values of β(d, r) both by developing explicit expressions
and through simulation, to explore the potential monotonicity of β(d, r) along both dimensions (the
diagonal does not appear to be monotonic), to test the rounding algorithm in practice, to develop
integrality gaps for the problem, to consider other orthogonal rounding procedures, and to consider
the bipartite problem over the unitary group / complex Stiefel manifold.

We also believe that there exists a 1/log(n) approximation ratio for the general (non-bipartite, non-
little) Grothendieck problem, and we hope to show this as well as that a constant factor ratio is
impossible to achieve in polynomial time (modulo computational hardness assumptions).
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