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Abstract

Computer Vision is the problem of having computers being able to
recognize and categorize objects in an appropriate manner. An important
problem in this field is the problem of 2-D puzzle reconstruction; we would
need to have the computer be able to tell whether two distinct pieces
could fit together and then reconstruct the puzzle given this information.
This paper will detail various algorithms that could be used to solve this
problem. We outline four possible approaches to this problem. Three
of these approaches involves embedding the puzzle as points in R2 and
using natural metrics of the plane to quantify errors from measured data
to use in our cost function. Our last approach treats the problem as a
completely abstract ’game’, in the sense of the Unique Games conjecture
in Computer Science, and uses an approximation algorithm formulated for
the Unique Games Problem to derive a solution. We discuss limitations
of these algorithms and how they could be improved to solve real life
problems.
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1 Introduction

The field of computer vision has been created due to fundamental differences
between the nature of machine and man; namely, machines do not have the
natural ability of man to recognize and classify objects. As a consequence,
complicated algorithms are needed for computers to be able to solve the problem
of recognition and reconstruction.

An important starting point for problems of this type is the issue of puz-
zle solving, or two-dimensional reconstruction. The computer has to be able
to determine the boundary of each of the pieces and, afterwards, be able to
determine which of the pieces would best fit next to one another. Afterwards,
the computer must be able to use this information gleaned by boundary in-
formation to determine how the pieces fit together in a global structure. This
specific issue is slightly easier than general computer vision because of the di-
mension reduction; since the only image a computer can see in one instance
is a two -dimensional projection, multiple projections are in general necessary
to reconstruct a three dimensional object. The two dimensional analogue is
given with a canonical projection that gives understanding of the entire nature
of the problem. Nevertheless, few algorithms are known to efficiently solve the
problem.

We will deal with the latter half of the problem of two dimensional recon-
struction. We assume as given orientation information given between any pair
of two pieces believed to be connected to each other and ,from this, we try to
determine the global connection between pieces and their relative orientations.
The issues with this problem come from the fact that the data given contains
many ’bad’ edges, e.g. pairs of pieces that are believed to be connected to each
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other, but really do not have such a connection. These types of errors are not
readily recognized by convex cost models and simple models do not readily solve
this problem.

Older approaches to this problem, an example of which is illustrated in
the paper of Singer and Lo, try to solve this problem by trying to explicitly
determine which of the edges given are outliers by geometric considerations. The
idea pursued in the latter paper involved creating a probability distribution on
the set of edges, the probability distribution serving as a measure of whether the
given edge was indeed valid. Updates are made to the probability model based
on whether small cycles were found involving the edge. The motivation behind
this idea based on the fact that if two pieces are adjacent, then they would also
have multiple small-hop neighbors in common. These common neighbors would
lead to multiple small cycles involving a correct edge. However, we would not
expect that two pieces that by mere chance could fit together locally could fit
together in a global structure by having multiple common neighbors.

The only issue with the latter method involves the fact that it becomes
difficult to remove all outliers in the data. Thus, we would still need a solver
that could still function in the presence of wrong edges. To this end, we try to use
the geometric consideration given as motivation in the earlier paper; that two
pieces that are only locally adjacent by chance could not in general fit together
due to the interference of correct edges, which establish geometric constraints
that would prohibit the placement and use of bad edges. We try to create cost
functions and convex programs that would incorporate such information into
their cost function.

Our first methods involve embedding the pieces in R2 by considering the
pieces as a set of points in R2. This involves a significant data reduction that
could still be used to reconstruct the solution. As a measure of error, we use
natural metrics inherited from R2 to establish measures on how much our data
deviates from the measured data. These natural metrics can readily be estab-
lished into convex functions and can be efficiently solved by classical convex
solvers; as such, these algorithms are very fast.

Our final method involves changing the paradigm entirely and treat the
problem of puzzle solving in much the same way as a human would solve it.
We reduce the problem to the instance of the Unique Games problem. Once
we have described the problem in terms of the unique games approach, then we
use an approximation algorithm inherited from the unique games approach in
order to solve the problem.

2 The method of SNL-SDP

2.1 Background on SNL-SDP

The problem that SNL-SDP attempts to solve is as follows. We are given a set
of n radio towers whose locations we want to find out. The only information
that we have to aid our task are noisy inter-pair distances between some of the
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radio towers. Mathematically, the problem statement can be described using
the following language.

In the plane R2 , we know there exists n points [Pi|i ∈ 1..n] and we wish
to determine the actual values of the coordinates xi and yi of these n points:
[Pi = (xi, yi)|i = 1..n]. The information given to us to solve this question
consists of noisy inter-distance information; namely, we are given the set of
values

[d∗(i,j) =
√

(xi − xj)2 + (yi − yj)2[1 + ε(i,j)]|(i, j) inE] (1)

where E is some subset of [(a, b)|a ∈ 1..n, b ∈ 1..n, a < b] and the ε(i,j) are
independent identically distributed gaussian variables of mean 0 and variance
1(or as appropriate for the measuring apparatus). As a shorthand, we use
the symbol dij to denote the actual distance between points namely dij =√

(xi − xj)2 + (yi − yj)2.
The SNL-SDP approach represents this question as the minimization of an

appropriate cost function, as is the paradigm of optimization. The simplest
type of cost function is the minimization of the sum of squares; indeed, this is
the workhorse for optimization, rather akin to the use of gaussian for statistical
inference. The square function has the nice properties that it is smooth(and
convex) and always positive. These properties make the square function elegant
and make it easier to solve for minima using calculus. In some simple instances,
it is actually possible to get a closed form solution using least squares. The
importance of emphasizing this fact will come into play later in which I will
contrast least squares with other types of error models.

The cost function we first ’try’ to implement is as follows:

min
(x′

i,y
′
i)

Σ(i,j)∈E |(d∗ij)2 − (x′i − x′j)2 + (y′i − y′j)2|2 (2)

One can also take instead of the second power of the difference from d∗ij ,
the first power of the difference with d∗ij . Unfortunately, neither power results
in an expression that is convex in the variables xi. We need a slight relaxation
in order to make this a convex expression.

The first trick to notice is that expressions of the form (x′i−x′j)2 +(y′i−y′j)2
can be expressed in terms of the matrix components of an appropriate semi-
definite matrix. First define X to be the n by 2 matrix with rows [xi, yi]; the
matrix Y = XXT will have coordinates [Y ]ij = xixj + yiyj . Thus, we can
express (x′i − x′j)2 + (y′i − y′j)2 in terms of the matrix Y as Yii + Yjj − 2Yij .

Thus, an equivalent representation of our earlier cost function is

min
X∈Rnx2

Σ(i,j)∈E |(d∗ij)2 − Yii − Yjj + 2Yij |2

subject to qquadY = XXT

The restriction that Y is of rank 2, which comes as a result of our prescription
of Y as coming from the product of a rank 2 matrix with itself, is not a convex
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constraint. It is now natural to see that the convex relaxation of the above
problem is to let Y vary over the class of all positive semi-definite matrices.

We now arrive at the manifestly convex problem

min
Y ∈Rnxn

Σ(i,j)∈E |(d∗ij)2 − Yii − Yjj + 2Yij |2

subject to Y � 0

In order to ’retrieve’ the n by 2 matrix we have to undergo a procedure
of rounding. By standard linear algebra, one can write the expression Y as
(UD)(UD)T , where U is an n by n orthogonal matrix and D is a diagonal
matrix( one can assume that the eigenvalues of D are orderedλn > ... > λ1 ≥ 0).
The two-dimensional projection we use will then be the first two columns of the
matrix UD.

It can be shown that over all matrices X in Rnx2 that UD is ’closest’ to
Y in the following sense: (UD)(UD)T is closest to Y in the following norm
‖A‖ = max‖v‖=1,v∈R1xn vtAv

This concludes our discussion on the theoretical basis of the SNL-SDP algo-
rithm

2.2 Formulation of the Fresco Problem as an Instance of
SNL-SDP

As many of our later approaches are minor variations of the cost function used
in SNL-SDP, many of the discussions that we undergo here will be useful in our
further considerations.

The pieces of our Fresco have a certain correspondence to the radio towers
that we try to localize in the SNL-SDP method. Geometrically, one knows that
we can localize the entire piece given the location of three points on the piece
that are not linear. Thus, for our problem of localization of pieces, we consider
each fresco piece as the union of three points whose coordinates we wish to
determine using the SNL-SDP algorithm.

The information that is given to us includes information on which of the
pieces are connected to each other and the relative orientation of pieces that are
adjacent to each other. As a result, one is able to find noisy distance information
about relative distances between the points on the pieces that are considered to
be adjacent.

However, the error model slightly differs from the error model given in the
previous section. In the case of the Fresco, we are not completely aware of which
pieces are supposed to fit together. Thus, in some instances, we get information
that is completely wrong; e.g. we say two pieces are supposed to fit together
even when they are not. In this case, the error model for the estimated distances
d∗ij will be completely random data rather than the Gaussian Error we proposed
earlier.

The error model above results in great amounts of error; namely, it is possible
to get data that proposes that two pieces are close together even when they are

5



far apart. In two dimensions, this data will be inconsistent. However, in higher
dimensions, it is possible for a solution to exist in higher dimensions; afterward,
the rounding procedure amounts in an incorrect solution.

Pure SNL-SDP is not robust to this type of errors, so our goal is to add
appropriate constraints to SNL-SDP that are robust to the error models that
we are proposing. One obvious geometric constraint is that the pieces should not
like on top of each other. This results in a spreading constraint on the problem;
namely, for any two points on distinct pieces namely t1 on piece p1 and point
t2 on piece p2, there should exist a lower bound on the distances between the
points p1.

With these modifications above, we are now going to construct the mathe-
matical formulation of our problem.

We are given N pieces P1...PN along with information about which of these
pieces are adjacent to each other along with information about how to orient
each of the adjacent pieces so that they fit together. After going through the
following transformation, we can turn this into numeric data.

For each of the pieces Pi we choose 3 points pi,1, pi,2, pi,3. These 3 pieces
are not adjacent to each other. Additionally, from the geometry of the piece,
we can determine for each point pi,j the smallest distance from the point to the
boundary of the piece containing it. We call this smallest distance from pi,j to
the boundary ri,j .

From the adjacency and rotation information, we shall be able to determine
appropriate distance information. Let E be the set of pairs of all ’adjacent
pieces’. For each (i, j) ∈ E we can get distance information d(i,k),(j,l) for all
k ∈ 1, 2, 3 and l ∈ (1, 2, 3) . We then impose the standard SNL-SDP method
with the additional constraints that the distance between point pi,j and pk,l is
greater than ri,j+rk,l if k 6= l and equality constraints for the distances between
points on the same piece.

Namely, we get the following optimization problem

min
Y ∈Rnxn

Σ(i,j)∈E |(d∗ij)2 − Yii − Yjj + 2Yij |2

subject to Y � 0

Y(i,k)(i,k) − Y(j,l)(j,l) − 2Y(i,k)(j,l) ≥ (r(i,k) + r(j,l))
2

2.3 Testing data set formulation

The general model for data set testing will be the same in most of the following
sections. We will mention necessary differences as appropriate.

A puzzle of n ’pieces’ come from the Voronoi cell decomposition from choos-
ing n random points from the [0, 1]x[0, 1] . Construction of the Voronoi cells
and adjacency matrix information comes directly from Matlab functionality. We
choose the three points from each piece in the manner outlined.

For each piece, we try to find the circle of maximum radius that can be
inscribed in that circle. This comes as the result of solving the following opti-
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mization question

max
(x,y)

r

subject to
|(apji )2x+ b

pj
i y + c

pj
i |√

(a
pj
i )2 + (b

pj
i )2

≥ r, ∀i

a
pj
i x+ b

pj
i y + c

pj
i (≥ or ≤)0 as appropriate

where a
pj
i x+ b

pj
i y+ c

pj
i are the equations of the boundary lines for the piece

pj .
One of the points we use for piece pj will be the solution to the above

optimization question: P(j,1) = (xSi , y
S
i ) . The associated radius r(j,1) will be

the solution to the above equation.
The other two points we choose are random on the piece. We set the corre-

sponding radius information to be 0(We hope that enforcing spreading between
the center of each piece would be sufficient).

Our error model is as follows: we first pick a number of m to be the total
number of bad edges to introduce. Afterwards, we randomly select m edges
from the set of edges that we did not choose to include in our set. On this set
of m edges we introduce random distance information between the points lying
on this data.

Our testing involves modifying m to determine how robust the SNL-SDP
algorithm is to data.

2.4 Discussion of Results
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The above graph depicts the difference in the performance of algorithm be-
tween the case in which we add no pairwise distance spreading constraints and
the case in which we include a pairwise distance spreading constraint when we
try to solve a 20 piece puzzle and progressively add bad edges as a measure
of the error. What can be noticed is that though the inclusion of the pairwise
spreading constraint does result in less error overall, the two curves have the
same shape.

In particular, what is very negative is the fact that the error rate jumps up
at the inclusion of even 2 bad edges. This amount of error shows that there
is very little robustness even with the introduction of the pairwise spreading
constraints. We explain this behavior as follows.

When we looked at the spectral gap between the second and the third eigen-
values, we noticed that the gap was very small. Namely, this indicates that we
are dealing with a naturally high dimensional solution; we are dealing with a
folded puzzle. What this would indicate is that when we apply the projection
to lower dimensions, the pieces would still lie on top of each other.

Ultimately, we see that just applying pairwise spreading constraint by itself is
not sufficient to guarantee that we obtain a low dimensional solution. However,
there are other papers that themselves have attempted to apply a spreading
approach to try to obtain low dimensionality and they have been successful.
What they did was try to create pairwise spreading constraints that involve
more than once piece. We believe that this may be able to ensure that we get
a 2-D solution.

However, the difficult geometry of the pieces rather makes it difficult to
provide very tight constants. One should note that finding such tight constants
are difficult even if one were dealing with circular pieces of varying radius(which
we used to create the pairwise spreading constraints)

3 SNL-SDP with L1 loss using the Manhattan
Norm

3.1 Background

We believe that the errors of the previous section were due to the fact that the
l2 cost function was too susceptible to the presence of outliers. We believed
that the reason for this was due to the fact that the solutions that were given
by our SNL-SDP solver were inherently high dimensional. Thus, the projection
to 2 dimensions resulted in a solution that gave overlaps of pieces.

This time, we attempt to create a manner of cost function that is more
robust to error using an L1 type of error. Namely, instead of trying to measure
the deviance from the square of the estimated distance d2ij , we want to create
an error model that measures the deviation from dij . However, this requires
significant modification in our cost function, as we can not represent the first
power of the distances as a convex function of the terms of the semi-definite
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matrix.(Manifestly, one can se this from the fact that the square root function
is not a convex function)

Our first relaxation tries to approximate
√
x2 + y2 with the manhattan norm

|x|+ |y|. Now we are dealing with the convex absolute value function; however,
the manhattan norm is not rotationally invariant, which causes some problems
with our formulation.

The best relationship we can derive completely is the fact that
√

2[|x|+|y|] >√
x2 + y2 > |x|+ |y|. However, for two points pi = (xi, yi) and pj = (xj , yj) and

distance dij from each other, it is unclear what value we want |xi−xj |+ |yi−yj |
to be. Specify the wrong value and the problem may not be solvable exactly.

Given our earlier inequality, we suggest trying to minimize a cost function
of the form Σij |

√
2dij − |xi − xj | − |yi − yj ||. Compared to choosing dij as a

maximum, this does not promote putting pieces on a single axis; however, our
choice is rather arbitrary.

Our full cost function will be

min Σ(i,j)∈E,k,l|
√

2d(i,k)(j,l) − |x(i,k) − x(j,l)| − |y(i,1) − y(j,l)|| (3)

subject tor(i,k) + r(j,l) < |x(i,k) − x(j,l)|+ |y(i,1) − y(j,l)|∀i, j, k, l, i 6= j (4)

d(i,k),(i,l) < |x(i,k) − x(j,l)|+ |y(i,k) − y(j,l)| <
√

2d(i,k),(i,l) (5)

To make this into a convex program, we use the standard relaxation for
absolute values(e.g. splitting into positive and negative parts).

Namely, we replace each instance of |x(i,k)−x(j,l)| with λ+ikjl+λ−ikjl and add

the further conditions that λ+ikjl − λ
−
ikjl = |xi − yj |.(And similar variables for y

of course, say ν)

3.2 Results and Discussion

The results of this solver were always trivial. Namely, x(i,k) and y(j,l) were
always set to 0 in our problem. By a further mathematical analysis, we were
able to deduce that this would be the case in all instances. The mathematical
analysis will be as below.

Observe as follows, if we set λ+ijkl = λ−ijkl and similarly for ν , we can then
make x(i,k) and y(j,l) equal to 0 for all pairs of points. Even with the above
restriction, it is still very easy to satisfy the constraints and minimize the cost
function as we can set the sum

√
2dij,kl = λ+ijkl+λ

−
ijkl+ν

+
ijkl+ν

−
ijkl. This system

of equations can be solved in a multitude of ways as well due to the fact it is
a combination of many equations none of whom share a variable in common.
The spreading condition is readily satisfied by ensuring the equality conditions
we maintained above; if not, then we are obviously given as data a condition
that cannot possibly be achieved by any solution. We could then remove the
incorrect condition and proceed on the original data. Thus, we can see that all
solutions to this formulation are trivial.

The main issue with this formulation is due to the fact that the slack variables
we introduce do not couple very strongly to each other. This lack of relation
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between the slack variables allows the solution to collapse to such a useless value.
If we were to adopt this manhattan norm scheme, we would need to have a way
that does not use such weak coupling in slack variables.

4 L1 norm using Schur Complement

4.1 motivation

Our motivation for the L1 norm is to have a cost function that is robust to
error. As said in the earlier section, an equality of the form y =

√
x cannot be

part of a convex problem. We decide to relax this constraint by setting y ≤
√
x

instead. This can be written in terms of the positive semi-definite condition:

M(i,k)(j,l) =

[
1 y(i,k),(j,l)

y(i,k),(j,l) x(i,k),(j,l)

]
with M ≥ 0. This is the insight of the paper of Simonetto and Leus

The cost function will simply be

max Σ(i,j)∈E,k,l|y(i,k),(l,j) − d(i,k),(l,j)|subject toM(i,k)(j,l) ≥ (6)

x(i,k),(j,l) = Xikik +Xjljl − 2Xikjl (7)

X ≥ 0 (8)

y(i,k),(j,l) = r(i,k) + r(k,l) (9)

4.2 Results and Discussion

When applying the solver to our test models, the answer is trivial in this case
as well. We found that the cost function was always 0, which it should not have
been, while the obtained matrix X had little to no relevance to the problem,
even when given completely correct data.

The reason for this is that the inequality on the y variables gives no control
on the matrix X. We can readily set y(i,k),(j,l) to the appropriate value d(i,k),(j,l)
. Then, to satisfy the inequality constraints created on the matrix X, we may
merely just increase the values on the diagonal arbitrarily high as to satisfy
all inequality constraints while the elements off the diagonal are all 0. This
will result in a matrix which trivially satisfies the property of being positive
Semi-Definite and also satisfy all of the inequality constraints that we have
established. Additionally, the spreading constraints should be trivially satisfied
if the equality of the y variables to the d variables hold. The auxiliary variable
we have included in this circumstance was not enough to guarantee good controls
on our matrix structure.
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5 The Unique Games Approach for ’L0’ error

5.1 Background and Motivation

Given the lack of robustness in the L62 methods and our inability to sufficiently
relax the l1 formulations in a manner in which we are actually able to obtain
non-trivial results.

We hope that trying to use a form of error will capture the robustness that
we desire while being able to have a sufficiently good relaxation so that we we
are able to obtain solutions that are legitimately non-trivial.

Here we must introduce the concept of what I would like to call ’L0’ (to
represent that we wish to use this error to reduce the errors generated by outliers
to the maximum extent possible). As we have mentioned before, in non-rigorous
terms, an outlier that is 10 times more than normal will be exacerbated by a
factor of 100 if we used the square norm error. However, notice that even
taking a single power will still create a large error factor that the solver will
unfortunately try to fit.

What would be ideal is if we could completely ignore the factor of 10 that
appears in the outlier. A nice idea would be to try to take pth powers where the
value of p goes to 0. However, this power notion takes all measures of distances
to 1 except if they are the same point. Using the SNL-SDP distance formulation
and strictly applying the L0 distance would be completely useless.

However, it would be nice to relax it and incur an error of 0 if two pieces
that we believe to be adjacent are actually adjacent in the solution configuration
while we occur an error of 1 if the opposite happens.

The notion of ’adjacency’ would be hard to easily capture in the context that
we are considering, so let us turn to a toy example where a notion of adjacency
can rather be easily defined.

Consider the following toy example which makes the notion of adjacency
that we want to capture exceptionally clear.

We have n2 pieces of equal sized squares that are the pieces of a puzzle that
fits on an n× n grid. Each square piece will fit into one and exactly one piece
of the grid. We assume here that each of the pieces have an obvious rotational
orientation.

This reduces the problem placement to deciding amongst a discrete set of
possible positions, rather than a continuous set of positions. We can thus define
a finite set of indicators pij = {1, 0} designating whether piece i is within square
j of the grid if the value is 1 and 0 otherwise. In the notation given previously,
I assume that we have some integer indexing of the set of pieces and of the set
of squares on the grid. Notice that for each i, we have that pij is 1 for exactly
1 value of j.

The notion of adjacency is rather obvious here; in general, we can describe
the square grid as being a graph G with the vertices of the graph being the
set of squares while the edges of the graph connect the grids of the square that
share a common edge in the grid.

Adjacency will be demonstrated as follows we can say that piece i is adjacent
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to piece j if for the position k such that pik = 1 we have that pjl = 1 for
one of the grid squares l such that in the graph G mentioned in the previous
paragraph, the grid squares l and k are connected by and edge. IN mathematical
language, given the graph G = {(V,E)}, the pieces i and j are connected if
∃k, ls.t.pik = pjl = 1and(k, l) ∈ E.

In this toy example, we can construct a cost function that will try to put the
desired pieces adjacent to each other. Let G’ be the graph of pieces where the
vertices V’ is the set of the pieces and E’, the edge set, contains pairs of pieces
that we believe should be adjacent to each other. The cost function that we try
to minimize is as follows.

min Σ(i,j)∈E′,(k,l)∈E |pik − pjl| (10)

subject topik = 0, 1 (11)

∀i, ∃ exactly one ks.t.pik = 1 (12)

∀k,∃ at most one is.t.pik = 1 (13)

The above is the exemplar of an integer program. The constraints ensure
that each piece is assigned to exactly one of the grid squares and that each grid
square can contain no more than exactly 1 point. The cost function will be
minimized when we the pieces we say are adjacent to each other are actually
placed adjacent to each other.

Let us write this in a manner that can be written in a relaxed form. First,
one must see that minimizing Σ|pik − pjl| will be equivalent to maximization of
pikpjl when we maintain the integer programming constraints.

Notice that pikpjl will be the terms of an appropriate gram matrix. Thus, it
would now be fruitful to rewrite the constraints in terms of these gram matrix
terms.

Namely, we would like to set pikpil = 0 for all i,k, and l. Additionally, we
would like Σp2ik = 1. Combining this constraint with the first constraint would
imply that exactly one of the pik values can be nonzero. The condition on the
squares would finally imply that this value is either 1 or -1. Finally pilpjl should
be 0 for all i,j, and l to ensure that no square can be covered by two pieces.

Thus, our final problem will be

min Σ(i,j),(k,l)pikpjlC(ik,jl) (14)

subject to pikpil∀i, k, l (15)

Σkp
2
ik∀i (16)

pilpjl = 0∀i, j, l (17)

where Cik,jl is a matrix that is 1 if we have that i and j are pieces that we
believe to be adjacent to each other and k and l are positions on the grid that
are adjacent to each other.

The relaxation to the set of positive semi-definite matrices will come by
replacing pikpjl as the terms of a matrix elementPikjl which will be positive
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semidefinte and rank 1. The other conditions can easily be seen to correspond
to linear sums of some of the terms of the matrix P. Relaxing this equation is
only a matter of removing the rank one constraint on the matrix P.

It should be clear that given the matrix P, one can do a standard SVD
decomposition to find the vector form [pik] for each i, one then finds the value
of k where the value pik is the highest and then chooses this value to be the
position in which we place the piece i.

5.2 Unique Games Approach

Readers who are very well-informed with the literature on NP-Hardness can be
aware that the puzzle solving instance that we have mentioned above is indeed
a somewhat veiled modified instance of the Unique Games approach.

In the Unique Games problem, we have a graph G in which we try to color
each of the vertices of the graph with one of k colors. The restrictions on the
coloring of the graph is as follows, for each of the edges e = (u, v) on the graph
we have an associated permutation map π(u,v) : [1, ...k] → [1..k] . The coloring
condition is that given u has color c, the color on the vertex v should be π(u,v)c.

What one can see is that if there is indeed a solution satisfying all of the
constraints, then one can easily find a solution by picking color for a random
point and then building up the solution from there. However, it is to be noticed
that if one only knows that if in the optimal solution only most of the solutions
can be satisfied, then it is rather improbable that we can get a configuration
that satisfies even close to many.

This difficulty in solving this problem is summarized in the following Con-
jecture by Subhash Khot called the Unique Games Conjecture

Unique Games Conjecture For any ε and δ there exists a large enough k
such that any instance of the Unique Games problem (Graph G, permutations
πuv number of colors K) with number of colors K greater than this k it is now
NP hard to distinguish between the following two possibilities

1. The optimal solution satisfies a fraction 1− ε of the constraints.
2. There is no solution satisfying more than a δ fraction of the constraints.

•
What we have seemingly managed to do in the course of our L0 relaxation

is reduce to attempt to reduce our problem to one that is already known for
being difficult to solve. Though this seems like a step backwards, we do have
one saving grace in the form of the following theorem

Probabilistically Optimal Algorithms for the Unique Games Prob-
lem Given that there is an optimal solution that satisfies a O(1− ε) fraction of
the constraints of a Unique Games Problem, it will be possible to find a solution
that satisfies 1−O(

√
εlog(k)) of the constraints of the Unique Games Problem

[Makarychev et al.] •
The algorithm given solves our SDP with a much more complicated rounding

procedure than we have suggested; indeed, it would probably be very computa-
tionally intensive to undergo the complicated selection algorithm suggested by
the paper of Makarychev. One issue with our simplified rounding procedure that
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it does not take into account trying to satisfy constraints together; the selection
procedure of Makarychev ensures that solutions will be applied together.

5.3 Algorithm Simplification by Fourier Transform

Since we have n2 pieces and n2 grid squares, our matrix will already have n4

dimension on each side. This, by itself, sounds like it would make the problem
computationally intractable. Indeed, this was the case with some of our initial
approaches to the problem. If one were dealing with a general graph rather than
a square grid, this is generally a loss that one must accept.

However, the square grid has a regular structure that renders it amenable
to dimensionality reduction. Namely, when one applies the discrete fourier
transform to the matrix C, then the result is a Block Diagonal Matrix. Since
we can implicitly ignore the parts of the matrix that have 0 term, we are only
only dealing with a matrix that is of dimension n3. Here, we have dimension n2

that comes from each block, while we will have n blocks on the diagonal.
Now, we will describe some of the theory of the discrete Fourier transform,

but only to the simpler case of circulant rather than block circulant matrices.
The result for circulant matrices can be extended to Block Circulant matrices
via the usage of tensor products.

A circulant matrix is of this form

M =


C0 C1 C2 ... Cn−1 Cn
Cn C0 C1 ... Cn−2 Cn−1
... ... ... ... ... ...
C1 C2 C3 ... ... C)


Notice that it will have eigenvalues ΣCje

−2πkji and will have eigenvalues
Σe−2πkjivi where the vi are the standard coordinate vectors. Merely by calcu-
lating inner product one can easily see that two of these eigenvectors are actually
orthogonal to each other. Thus, one can diagonalize the matrix C with some
matrix P to PCP∗ = D.

A Small Note in Actually Preparing the Puzzle for the Unique
Games Approach

One issue in the unique games approach is that the boundaries of the grid are
not exactly the same as the center of the grid. Thus, the unique games model
and the dimensionality reduction approach that we have mentioned earlier do
not hold exactly.

However, there is a simple mathematical trick for for creating this symmetry,
though the geometric implications of the application of the trick would be less
than desirable. Instead of thinking of the grid of having an edge, we think of
the edges as wrapping around to the other side. What this implies instead is
that we are trying to put the pieces of the puzzle onto the torus and solve it
there.

Though jigsaw puzzles on the torus have the undesirable property of being
rather absurd, they satisfy the nice properties of allowing us to engage in our
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Unique Games Approach and associated Dimensionality reduction via regular-
ity of the puzzle. Once a solution on the torus is found by the solver and is
sufficiently correct, one can expect a human can determine proper edges of the
puzzle for himself.

5.4 The Modification for General Pieces

We do not have the fortune that all of our pieces squares of the same size
and are square, so we have to make do in another way. However, the idea of
discretization of the puzzle space [0, 1] × [0, 1] into a square grid is the proper
way to go to establish a natural notion of adjacency as we have done earlier in
our toy example.

What we can do for our irregularly shaped pieces is assign each piece to an
appropriate grid square based on whether we put some chosen point of the piece
into that square. Namely, for each point pi , we designate some point ci which
we will call the center. The grid location of the center is thence the place we
assign the point cI to.

Another important consideration is to note is that rotational angle of the
piece is rather important, as compared to the toy example in which orientation is
obvious. To deal with this consideration, what one can do is discretize the space
of rotation [0, 2π] as finitely as one wants. Then each piece can be designated
by the position of its center and its rotation.

Given both of these pieces of variables given two pieces that are supposed
to be adjacent to each other say p1 and p2 then for any position and associated
rotation of p1 one can find the position and rotations of p2 such that p1 and p2
are placed geometrically next to one another. This creates the permutations π
that is desired.

With this type of considerations, one can use any level of discretization that
one desires as long as the grid squares of the resulting discretization are not so
large so that two pieces are allowed to be found in the same square. Indeed,
taking the discretization to infinity, essentially one arrives that the continuous
case.

There are two problems with choosing a discretization that is arbitrarily
large. Discretizing the grid too much makes the search space extremely large, so
the computational time taken is far larger than necessary. The second problem
is that we only know distances between pieces up to small noise, so specifying
an associated permutation for each edge will become unrealistic if there are too
many grid squares.

What one should do is find an appropriate balance of number of grid squares
to the size of each piece, which is what we will focus on now.

Our testing model is the same as what was described on previous sections;
namely, one constructs the Voronoi diagram to divide the [0, 1]x[0, 1] square into
various pieces. Using the radius finding procedure that has been mentioned in
previous sections, the size of the each grid square will then be min(r1...rn). Thus
we will deal with a discretization into a 1

ri
square.
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Notice that by choosing this size, we will be able to ensure that no two pieces
can have center in the same square. Additionally, up to a small constant factor(
at least less than 3), we cannot make the grid size larger without allowing more
than 1 piece having centers in the same square.

5.5 Results and Discussion

One can see that even with the reduction of dimension due to the usage of
the block circulant structure of the limit, the time complexity of the algorithm
is polynomial of very high power. As such, even in our very small test cases
(around 10 pieces), it was taking a prohibitively large time to produce a result
for analysis. Running a battery of tests, which would be desirable, was rather
impossible in our scenario.

In fact, the only test that we were able to run within a reasonable time frame
was the three pieces case. In the three piece case, however, the only solution is
that all of the three pieces are adjacent. This is exactly the result of solver, but
it is too simple to make a definitive statement as to whether the algorithm is
actually successful in being able to derive a solution.

A Convex Program and Positive Semidefinite
Matrices

Here we will cover some basic definitions appropriate for convex optimization
theory.

A.1 Convex Functions

Convex Functions A convex function f is one which satisfies the inequality
f(λa + (1 − λ)b) < λf(a) + (1 − λ)f(b). If the function is twice-differentiable,
this is equivalent to the second derivative begin non-negative. •

This property allows us the most important theorem for convex functions in
optimization: a local minimum is a global minimum.

Proof Assume for contradiction that the point a is a local minimum, but
there is a point b is a global minimum strictly less than a. Then we have that
f(λa+ (1−λ)b) ≤ λf(a) + (1−λ)f(b) < f(a). For λ close to 1, this means that
the value of f in some neighborhood around a will have values less than that of
f(a) thus, a is not a local minimum of the function. •

In essence, the above property allows for the convergence of methods that
use ideas similar to gradient descent(namely the idea of following the direction
where the derivative is highest). Since there is only one local minimum, the
global minimum, there is no issues in getting stuck in a local minimum that is
not optimal.

The second important definition that one must know is the definition of
convex set.
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Convex Set A convex set satisfies the property that for any two points a, b
in the set: the line containing a and b is also within the set.

The above property allows us to also engage in gradient descent without
concern. One can imagine that if we could not travel along straight lines, then
one may not necessarily be able to travel in the direction of greatest descent.
Since we only understand local properties of a function during minimum finding,
it would be hard to tell if there exists a global minimum across a gap.

Thus, in the formulation of a convex optimization problem, one needs both
a convex function and a convex set. Interior point algorithms use both of these
facts to generate a polynomial time solver.

Minimization Property for Convex Functions The local minimum of
a convex function is also a global minimum

Pf: Say x1 is a local minimum and x2 is a global minimum. By the convex
inequality, we have f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) < f(x1) for λ
close to 1. Thus, x1 cannot be a local minimum. •

A.2 Semi-definite Matrices

Positive Semi-definite Matrices An n by n symmetric matrix ,A, is positive
semi-definite if for all vectors v, it is the case that vTAv > 0 for all vectors v.

By standard linear algebra, one knows that symmetric matrices(those that
satisfy the property that A = AT ) are diagonizable. We will sketch a short
proof of this property:

First, notice that if Av = λv, then if w is a vector that is orthogonal to v
then 0 =< λv,w >=< Av,w >=< v,ATw >=< v,Aw >. So A maps the set of
vector orthogonal to v to the set of vectors orthogonal to w. Thus, if one is able
to find at least 1 eigenvector to A, then one can proceed by induction to find a
full orthogonal set of eigenvectors to A. Now, the existence of 1 eigenvector is
standard theory( one can find a root of the characteristic polynomial to find a
value λ such that A− λI is not invertible, an element in the null space is thus
an eigenvector). •

Now, the inequality condition on positive Semi-definite matrices shows that
all the eigenvalues are non-negative.

The form of these matrices can comprise both linear and quadratic optimiza-
tion. The use of SDP in representing sum of squares is clear from the first sec-
tion of this paper. Also, notice that the diagonizability of positive Semi-Definite
Matrices allows us to readily obtain projections via the eigenvalue decomposi-
tion. This together makes semi-definite matrices an excellent way to represent
distances in any number of dimensions.

The most important part of the set of Positive-Semidefinite matrices, how-
ever, is that it is a convex set. Namely vT (A+B

2 )v = 1
2 [vTAv+vTBv] > 0. This

convexity allows us to travel in the interior of the set for interior point methods.

17



B Acknowledgments

I would like to thank the help of Graduate Students Yuehaw Khoo and Onur
Ozyesil who were very willing to meet with me and help me in much of the
implementation issues. I would also like to thank postdoc Justin Solomon for
his aid.

C Code Samples at End of Paper

References

[Ye, Biswas et al., 2008] Ye, Biswas et al. (2008) Semidefinite Programming Ap-
proaches for Sensor Network Localization with Noisy Distance Measure-
ments IEEE Transactions on Automation Science and Engineering (3),
360-371.

[UniqueGamesPaper] oses Charikar, Konstantin Makarychev, Yury
Makarychev, SODA 2007, pp. 62-68; Special issue of ACM Transac-
tions on Algorithms, vol. 5, no. 3, article 32, July 2009

[UniqueGamesNotes] onstatnin Marykachev University of Washington Lecute
NOtes on Unique Games

[Multireference Alignment] . S. Bandeira, M. Charikar, A. Singer, A. Zhu ‘Mul-
tireference Alignment using Semidefinite Programming, 5th Innovations in
Theoretical Computer Science (2014).

[Maximum Likelihood] istributed Maximum Likelihood Sensor Network Local-
ization Andrea Simonetto, Geert Leu

18



function [ x,Y,RandomPMatrix,AA,C,bb ] = SDPL1cost( X ) 

%SDPL1cost We solve the fresco problem with an L1 cost function 

%   We  

subplot(4,1,1) 

voronoi(X(:,1),X(:,2)); 

[RandomPMatrix,Radius ] = RandomPointMatrixRadius( X ); 

 

[ DD ] = DistancebtwnPoints( X,RandomPMatrix ); 

[ ED ] = EqualityConstraints(X,RandomPMatrix ); 

[m,~]= size(RandomPMatrix); 

ColorMatrix=rand(m/3,3); 

subplot(4,1,2) 

 

for counter=1:m 

    

plot(RandomPMatrix(counter,1),RandomPMatrix(counter,2),'color',ColorMatri

x(ceil(counter/3),:),'marker','+'); 

    axis([0 1 0 1]) 

    hold on 

end 

hold off 

distance= DD+ED; 

[blk,At,CC,bb,m,gsize,AA ,C] = SDPLinearData(distance,Radius ); 

L=[zeros(2*m,2*m+7*gsize);zeros(7*gsize,2*m),eye(7*gsize)]; 

L2=[eye(2*m),zeros(2*m,7*gsize);zeros(7*gsize,2*m+7*gsize)]; 

L3=[1,zeros(1,2*m+7*gsize-1)]; 

L4=zeros(1,2*m+7*gsize); 

L4(1,m+1)=1; 

M1=[zeros(2*m+7*gsize,2*m+7*gsize);eye(2*m+7*gsize,2*m+7*gsize)]; 

M2=[zeros(2*m+7*gsize,2*m+7*gsize),eye(2*m+7*gsize,2*m+7*gsize)]; 

M3=zeros(4*m+14*gsize,4*m+14*gsize); 

M3(1:2*m,1:2*m)=eye(2*m,2*m); 

B=zeros(2*m+7*gsize,1); 

cvx_begin %sdp 

variable t 

%variable Y(2*m+7*gsize,2*m+7*gsize) 

%variable Z(4*m+14*gsize,4*m+14*gsize) 

%variable y 

variable x(2*m+7*gsize) 

minimize(C'*x) 

subject to 

AA'*x==bb 

L*x>=B 

%Y*diag(x)>=eye(2*m+7*gsize) 

%Z>=zeros(4*m+7*gsize,4*m+7*gsize) 

%Z*M1==[Y;eye(2*m+7*gsize,2*m+7*gsize)] 

%M2*Z==[Y',eye(2*m+7*gsize,2*m+7*gsize)] 

 

%norm(L2*x,1)-t>=0 

L3*x>=t 

%L4*x<=-0.0 

cvx_end 

X=x(1:m,1); 

Y=x(m+1:2*m,1); 



XY=[X,Y]; 

 

subplot(4,1,3) 

for counter = 1:m 

    

plot(X(counter,1),Y(counter,1),'color',ColorMatrix(ceil(counter/3),:),'ma

rker','+'); 

    axis([-1 1 -1 1]) 

    hold on 

end 

hold off 

 

%{ 

refinemaxit = 1000; 

   plotyes  = 0;   

   alpha    = [];  

   PP       = []; 

   printyes = 1; 

   if ~exist('OPTIONS'); OPTIONS = []; end 

 

   if isfield(OPTIONS,'refinemaxit'); refinemaxit = OPTIONS.refinemaxit; 

end 

   if isfield(OPTIONS,'plotyes'); plotyes = OPTIONS.plotyes; end 

   if isfield(OPTIONS,'alpha');   alpha   = OPTIONS.alpha; end 

   if (plotyes); PP = OPTIONS.PP; BoxScale = OPTIONS.BoxScale; end 

   if isfield(OPTIONS,'printyes'); printyes = OPTIONS.printyes; end 

   pars.gaptol = 1e-6;  

   pars.printlevel = 0; 

   if isfield(OPTIONS,'gaptol');     pars.gaptol = OPTIONS.gaptol; end 

   if isfield(OPTIONS,'printlevel'); pars.printlevel = 

OPTIONS.printlevel; end 

    

   tstart = clock; 

   [obj,xx,yy,zz,info] = sqlp(blk,At,CC,bb,pars); 

   X=0;Y=0; 

  

  XY=[xx{1}(1:m,1),xx{1}(m+1:2*m,1)]; 

    display(obj); 

    %} 

  [XY,~,~] = NewMatchPosition(RandomPMatrix',XY' ); 

  XY=XY'; 

   

  x=XY(1:m,1); 

  Y=XY(1:m,2); 

  subplot(4,1,4) 

for counter=1:m 

    

plot(x(counter,1),Y(counter,1),'color',ColorMatrix(ceil(counter/3),:),'ma

rker','+'); 

    axis([0 1 0 1]) 

    hold on 

end 

 

end 



function [ output_args ] = SensorNetworkCVX(n ) 

%SensorNetworkCVX Sensor Network Alg using CVX 

%   connected(i,j):Piece i,j connected 

%   EC(i,j): Equality constraints between i and j 

%   IC(i,j): Inequality constraints between i and j 

%   G(i,j,:): Coefficient matrix to multiply Z 

%   (G(i,j,:)'*Z*G(i,j,:)==Z[i,i]-2*Z[i,j]+Z[j,j] 

%   A(i,j) stores absolute value of difference between our value of 

D(i,j) 

%   and expected value of D(i,j) 

%   D(i,j)= list of expected distances 

 

cvx_begin sdp 

variable Z(3*n,3*n) 

variable lambdaplus(3*n,3*n) 

variable lambdaminus(3*n,3*n) 

variable A(3*n,3*n) 

minimize sum(sum(A)) 

subject to 

     

 

for i=1:n 

    for j=1:n 

        if( connected(i,j)==1) 

            A(i,j)==lambdaplus(i,j)+lambdaminus(i,j); 

        end     

    end 

end     

for i=1:n 

    for j=1:n 

        if(connected(i,j)==1) 

            lambdaplus(i,j)-lambdaminus(i,j)== G(i,j,:)'*Z*G(i,j,:)-

D(i,j)*D(i,j); 

        end 

        if(equality(i,j)==1) 

            G(i,j,:)'*Z*G(i,j,:)==EC(i,j); 

        end 

        if(inequality(i,j)==1) 

            G(i,j,:)'*Z*G(i,j,:)>=IC(i,j); 

        end     

    end 

end  

Z>=0 

cvx_end 

 

end 

 



function [ l,X ] = UniqueGamesSDP( Z) 

%UNTITLED Summary of this function goes here 

%   Detailed explanation goes here 

[DFTC,n,p] = MakeCirculant(Z); 

IMAG=imag(DFTC) 

 

for L1=1:n^2 

    CFour(1:2*p,1:2*p,L1)=ExpandComplex(DFTC((L1-1)*p+1:L1*p,(L1-

1)*p+1:L1*p)); 

end 

 

%Cs=sparse(C); 

 

%n=4; 

%p=5; 

%C=rand(p*n^2,p*n^2); 

 

%{ 

D=zeros(p*n^2); 

E=zeros(p*n^2); 

for i=1:p 

    for j=1:n^2 

         

            D((i-1)*n^2+j,(i-1)*n^2+j)=ceil(j/n); 

    end 

end 

for i=1:p 

    for j=1:n 

        for k=1:n 

            E((i-1)*n^2+n*(k-1)+j,(i-1)*n^2+n*(k-1)+j)=j; 

        end 

    end 

end 

%} 

 

for k = 0:(n^2-1) 

    for j= 0:(n^2-1) 

        FTcos(k+1,j+1) = cos(2*pi*k*j/n^2); 

        FTsin(k+1,j+1) = sin(2*pi*k*j/n^2); 

    end 

end 

cvx_begin sdp 

%variable X(p,p,n^2) 

variable Z(2*p,2*p,n^2) 

variable DFX(2*p,2*p,n^2) 

maximize(trace(sum(Z,3))) 

subject to 

 

for k = 1:n^2 

       for j = 1:p 

            for i = j:p 

                DFX(i,j,k) == DFX(i+p,j+p,k); 

                DFX(i+p,j,k) == -DFX(i,j+p,k); 

            end 



       end 

end 

 

 

for i=1:n^2     

    %DFX(:,:,i)==[real(X(:,:,i)),-

imag(X(:,:,i));imag(X(:,:,i)),real(X(:,:,i))]; 

    DFX(:,:,i)>=0     

    Z(1:2*p,1:2*p,i)==CFour(:,:,i)*DFX(:,:,i) 

end 

 

DFX(1:p,1:p,1)==ones(p,p); 

DFX(1:p,p+1:2*p,1)==zeros(p,p); 

 

for i=2:n^2 

    for j=1:p 

        DFX(j,j,i)==1/n^2; 

        DFX(j,j+p,i)==0 

    end 

end 

 

for i=1:p 

    for j=(i+1):p 

        for L=0:(n^2-1) 

            if(j==i+1) 

              

                reshape(DFX(i,j,:),[1 

n^2])*FTcos(:,L+1)+reshape(DFX(p+i,j,:),[1 n^2])*FTsin(:,L+1)==0;                

                reshape(DFX(i,j,:),[1 n^2])*FTsin(:,L+1)-

reshape(DFX(p+i,j,:),[1 n^2])*FTcos(:,L+1)==0; 

            else 

                

                reshape(DFX(i,j,:),[1 

n^2])*FTcos(:,L+1)+reshape(DFX(p+i,j,:),[1 n^2])*FTsin(:,L+1)>=0; 

                reshape(DFX(i,j,:),[1 n^2])*FTsin(:,L+1)-

reshape(DFX(p+i,j,:),[1 n^2])*FTcos(:,L+1)==0; 

            end 

             

       end 

    end 

end 

%{ 

%X==semidefinite(p*n^2); 

%{ 

for i=1:p 

    for j=i+1:p 

         

        %if(rand<1/10) 

       trace(ones(n^2,n^2)*X((i-1)*n^2+1:i*n^2,(j-1)*n^2+1:j*n^2))==1 

        

        %end 

    end 

end 

 



for i= 1:p 

    for j=1:n^2 

        for b=j+1:n^2 

            if(rand<1/10) 

            X((i-1)*n^2+j,(i-1)*n^2+b)==0; 

            end 

        end 

        if(rand<1/10) 

        X((i-1)*n^2+j,(i-1)*n^2+j)==1/n^2; 

        end 

    end 

 

end 

for i=1:n^2 

    v=zeros(1,p*n^2); 

    for j=1:p 

        v(1,(j-1)*n^2+i)=1; 

    end     

    if(rand<1/10) 

    trace(v'*v*X)<=1; 

    end 

end 

     

        

for i=1:p*n^2 

    for j=1:p*n^2 

        if(rand<1/10) 

            X(i,j)>=0; 

        end 

    end 

end     

 

%trace(E*X)==p*n/2; 

%trace(D*X)==p*n/2; 

%} 

%} 

cvx_end 

X_Orig= zeros(p*n^2,p*n^2) 

for k =0:(n^2-1) 

    X_Orig((p*k+1):(p*(k+1)),(p*k+1):(p*(k+1)))=DFX(1:p,1:p,k+1)+sqrt(-

1)*DFX((p+1):(2*p),1:p,k+1); 

end 

V=real((kron(dftmtx(n^2)/sqrt(n^2),eye(p)))'*X_Orig*kron(dftmtx(n^2)/sqrt

(n^2),eye(p))); 

[v,d]=eig(V); 

l=v(:,1); 

end 

 


