
Aggregation-Based Learning in the

Inverted Pendulum Problem

Gerald van den Berg

Advised by Prof. Warren Powell

Program in Applied and Computational Mathematics

Princeton University

Contents

1 Introduction 2

2 The Credit Assignment Problem 4

3 Approximate Dynamic Programming 6

4 Aggregation 7

4.1 Introduction . 7

4.2 Bayesian Model with Hierarchical Aggregation 8

5 The Knowledge Gradient Policy 12

5.1 Bayesian Model for ADP . 14

5.2 Calculating the Knowledge Gradient . 16

5.3 The Knowledge Gradient Policy for ADP 17

6 Results 18

7 Conclusion 21

1

Abstract

We consider the problem of adapting approximate dynamic programming tech-

niques to the inverted pendulum task. This is a particularly challenging task as

we work with a relatively uninformative reinforcement signal and have no a priori

information about our system. Success in this task requires an effective solution to

the credit assignment problem, incorporation of noisy and biased information into

our belief about the system, and efficient learning. We use an aggregation-based

Bayesian prior to estimate our value function and explore the performance of the

knowledge gradient algorithm relative to other policies. We deal with the credit

assignment problem through the use of a decaying trace of the reinforcement signal.

Although this updating mechanism violates some assumptions of traditional learn-

ing models, we find that the knowledge gradient policy is effective in improving

performance.

1 Introduction

The task of balancing an inverted pendulum (also known as the pole-balancing problem)

was originally used to demonstrate a series of conventional control techniques. Roberge

was one of the first to show that we can develop effective controls despite the presence

of nonlinearities and the inherently unstable nature of the system (Roberge, 1960). The

problem has since been used to demonstrate the effectiveness of reinforcement learning

techniques ranging from genetic algorithms to neural networks, and there has been an

increased focus on finding effective algorithms for this task with little or no prior systems

information. The problem becomes significantly more difficult under these conditions

because the algorithm now needs to develop a policy while learning about the underlying

dynamics of the system.

The goal of the inverted pendulum task is to balance a pendulum on a cart while

ensuring that the cart remains within certain bounds on a track. We balance the system

by applying either a leftward or rightward fixed-magnitude force. The system is reset

every time the pendulum either falls over or the cart goes off of the track.

2

The state of our system St is given by four variables: θt (rad), xt (m), θ̇t (rad/s), and

ẋt (m/s). θ is the angle of the pole relative to an upright position, and θ̇ is the angular

velocity. The position of the cart is given by x, and ẋ is the velocity of the cart. An

illustration of the system is given below in Figure 1.

Figure 1: The Inverted Pendulum System

The dynamics of the system are determined by a number of parameters, which we

give in Table 1. These parameters are consistent with the standard values used when

working on this problem. The angular and horizontal acceleration at time t are given

by:

θ̈t =
mg sin θt − cos θt

[
Ft +mplθ̇

2
t sin θt

]
(4/3)ml −mpl cos2 θt

,

ẍt =
Ft +mpl

[
θ̇2t sin θt − θ̈t cos θt

]
m

.

We use a discrete time Euler approximation of the dynamics with a time-step of size

τ = 0.02s to simulate the system, which leads to the following updating equations.

Ft ±10 N force provided at time t
m 1.1 kg mass of the cart-pendulum system Position of the cart (m)
mc 1.0 kg mass of the cart
mp 0.1 kg mass of the pendulum
l 0.5 m distance from center of mass of pole to the pivot
g 9.8 m/s acceleration due to gravity

3

θt+1 = θt + τ θ̇t,

xt+1 = xt + τ ẋt,

θ̇t+1 = θ̇t + τ θ̈t,

ẋt+1 = ẋt + τ ẍt.

We consider our pendulum to have fallen over if |θ| > 12 ◦ and set the bounds of our

track to be at ± 2.4 m. We reset our system to a balanced state (θ, x, θ̇, ẋ) = (0, 0, 0, 0)

upon failure. Our reinforcement signal rt = −1 after failure, and rt = 0 otherwise.

2 The Credit Assignment Problem

A central challenge of the inverted pendulum problem is establishing the contribution of

individual decisions and determining which decisions were important in achieving success

or failure. This is known as the credit assignment problem. A classic example of this

problem is the game of checkers. In checkers, there are only three scenarios in which a

non-zero signal is received: we receive a positive signal if we jump over our opponent’s

piece, a negative signal if our opponent jumps over one of our pieces, and a positive signal

if we win the game. Clearly this signal is insufficient for learning how to play checkers.

For example, a common move in checkers is to sacrifice one piece in order to take two

or more of the opponent’s pieces. Such a rule could never be discovered if we only use

the basic reinforcement signal because we would consistently assign a negative value to

the sacrificial move. Samuel (1967) was nevertheless able to develop a machine learning

algorithm for playing the game by looking backward over a tree of all possible moves in

order to evaluate the scores of different positions on the board.

A similar problem exists in our inverted pendulum task. Although our reinforcement

signal will be sufficient to learn that extreme values of θ and x are undesirable, it does

not allow us to determine which decisions led us to those extreme states in the first place.

4

A number of different approaches have been used to try to deal with this problem. One

approach, taken in Connell and Utgoff (1987), is to make our signal more informative by

using the distance from the stable (0, 0, 0, 0) state as a metric for evaluating the value of

different states. An alternative approach, used in Rosen et al. (1988), treats the inverted

pendulum problem as a failure avoidance task and tries to identify actions which lead to

cycles in the state space.

Some of the more successful solutions to the credit assignment problem have come

from neural network approaches. One of the most significant innovations was proposed

by Michie and Chambers (1968), who use the the expected lifetime from a certain state

to drive decision-making. In particular, they discretize the state space into boxes, each

of which keep track of what decision (left or right) is made from that state. Once a

failure signal is received, the value at each box is updated depending on the decision

that was made. The probability of making that decision in the future is then implictly

updated as well. Barto et al. (1983) extend this approach and train a neural network

using the discretized state space using an adaptive heuristic critic. Their approach was

quite successful, and they were able to avoid failure for over thirty minutes after less than

100 failures.

Our goal was to eliminate as much structure and system information from the algo-

rithm as possible. Nevertheless, simply using the basic reinforcement signal would not

allow us to achieve success in this task. For this reason, we choose to use a variant of

the reinforcement signal proposed by Michie and Chambers (1968). We only update our

estimate of the value of a given state after failure. We define some constant penalty value

c, and then set

r(Stv) = −α(tf − tv) · c,

where α is a parameter (0 < α < 1) that indicates the rate of decay, Stv is the state

we visit at time tv, and tf is our time of failure. This reinforcement signal mimics a

decaying signal trace through the history of visited states that led us to failure. States

that are visited close to failure will receive signals close to −c, whereas states that were

visited a long time ago will receive signals ≈ 0. Note that we are not imparting any

5

additional information to our system, except for the parameter α (which has no real

physical correspondence). It does, however, mean that updating only occurs at failures.

This is a weakness of the system and will contradict some of the models we use for deriving

the knowledge gradient policy. Nevertheless, it remains the case that we will obtain a

measurement of every state we visit: the only obstacle is that we are now dealing with a

lagged information process.

3 Approximate Dynamic Programming

In this paper we use a dynamic programming approach to solve the inverted pendulum

problem. Dynamic programming is a powerful technique for making decisions in a general

setting. In particular, it seeks to explicitly balance the contributions of our decisions in

the short term with the value of being in a particular state V (St) at time t, where we

define

V (St) = sup
π

E
∞∑
n=0

C(Sn, X
π,n,Wn+1).

Bellman’s equation gives us a formula for recursively computing the value of each state:

Vn(S) = max
x∈X

[Cn(Sn, xn) + γE [Vn+1(Sn+1)]] ,

where Sn+1 = SM(Sn, xn,Wn+1) is the state we transition to given that we take decison xn

starting from state Sn. Note that we need to take an expectation because our transition

could depend on exogenous information arriving at n + 1 (and hence unknown at time

n). Traditionally the expectation is calculated by working backward through a tree with

all possible future states. Unfortunately this computation can be intractable for many

large scale problems. Approximate dynamic programming (ADP) seeks to remedy this

by replacing our backward calculation of the expectation with a forward looking estimate

of the value of future states:

ν̂n(S) = max
x∈Xn

C(Sn, xn) + γ
∑
s′∈S

P {s′|Sn, xn}Vn(s′),

6

where Vn(s) is our time n estimate of the value of being in state s. By using an estimate

we no longer have to consider all possible future states in our calculation, but only the

set of states that we could reach at time n+ 1.

In a basic updating scheme, we use our estimate ν̂n(S) to update our estimate of the

value of state s:

Vn+1(Sn) = (1− αn−1)Vn(Sn) + αnν̂n + 1.

Such an approach is problematic, however, because we only update the value of the state

that we actually visit. If our states were totally independent this would be a perfectly

reasonable updating scheme. Generally speaking, however, our states are related to each

other. For example, in our inverted pendulum problem states with similar values of θ will

have similar values. Our approximation of the value function should take into account

that similar states are related. The ability to update our estimate of the value of states

other than the one we are measuring becomes particularly important as the size of our

state space grows, because the frequency with which we observe our individual states

becomes smaller.

4 Aggregation

4.1 Introduction

We use an aggregation-based updating model to express the relations between different

states. Aggregation can be defined as a method for combining different estimates to

form an approximation of the value of a state. It is a powerful tool in the context of

dynamic programming because it allows us to work around the curse of dimensionality

by approximating our value function in an aggregated space with a smaller number of

dimensions. Aggregation-based updating schemes can also be efficiently implemented and

allow us to tackle large state spaces.

We limit ourselves to hierarchical aggregation structures in this paper. A set of

7

hierarchical aggregation functions satisfies

|S(g)| ≤ |S(g−1)| (1)

Ag(S) = Ag(S ′) if Ag−1(S) = A(g − 1)(S ′) (2)

Ag−1(S) 6= Ag−1(S ′) if Ag(S) 6= Ag(S ′). (3)

These rules specify a hierarchy amongst our different levels of aggregation. If two states

share an aggregated alternative at level g − 1, they must also share an aggregated alter-

native at level g. Letting Ag(S) = i indicate that S belongs to aggregated alternative i at

level g, we will have a set of indices 1, . . . , |S(g)| for each level of aggregation. Typically

at the highest level our aggregation function sets AG(S ′) = 0 ∀ S ′, and at our lowest level

A0(S)→ S.

4.2 Bayesian Model with Hierarchical Aggregation

We now define a series of properties of the aggregated alternatives and look to relate

these to our estimates at a disaggregate level. In our model we consider each aggregated

alternative Ag(x) as its own alternative with some true value θgx. We then hold some belief

µgx with some precision βgx about each aggregated alternative. We update these parameter

values every time that we make a measurement of that alternative.

We use a Bayesian model, which implies that we have a prior belief which we update

given new evidence. Placing a prior on our value function approximation is appealing

because of its generality, as we can model all of the uncertainty in our problem as a

part of our value function approximation. When working with aggregation, our prior

consists of three parameters: {µ0
x}x∈X , {βx0}x∈X , and our aggregation structure. If we let

β0
x′ = 0 ∼ ∀x′ ∈ X , then we call our prior uninformative. We have some existing estimate

of the value but have zero confidence in our estimate. Even in such cases, however, we

must specify an aggregation structure. We also assume that we can collect independent,

unbiased, normally distributed observations ŷx ∼ N(µx, λx) of the unknown means µx.

We model each of our aggregated alternatives as independent and normally dis-

8

tributed. Although normality is a reasonable assumption in most cases, it should be

clear that our aggregated alternatives are not at all independent. Indeed, the fact that

we are using an aggregation structure indicates that they are structurally related. We pro-

ceed with this modeling assumption, however, because it makes the updating equations

more tractable, and we will use bias terms to alleviate the dangers of this assumption.

At the disaggregate level, we also model each of our alternatives as independent and

normally distributed:

θx ∼ N (µx, (σ
0
x)

2).

We model our aggregated alternatives as

θgx ∼ N (µx, ν
g
x), (4)

where νgx is the variance of θx − θgx. We consider (θgx − θx) to be independent across

alternatives and across different values of g. We currently consider νgx a fixed parameter

of the model, but will eventually approximate it using an empirical Bayesian approach.

We are now prepared to model our observations and their effect on our prior distri-

bution. Generally speaking, whenever we measure alternative x the observation ŷnx will

have a distribution N (θx, λx), where λx is the measurement variance. For our model we

go one step further and assume that at the aggregate level we have ŷg,nx ∼ N (θx, (σ
g,n,ε
x)2,

where (σg,n,εx)2 is in some sense the measurement variance for the aggregated alternative.

In practice we set ŷnx = ŷg,nx , where the intuition is that ŷnx is a sample realization from

N (θx, (σ
g,n,ε
x)2). This means that (σg,n,εx)2 should be a decreasing function of g, as our

range of possible sample realizations grows larger and larger as we move to lower levels

of aggregation.

In the proposed Bayesian model ŷg,nx induces a posterior on our belief µgx. If our

observation ŷn+1
x′ does not share an aggregated alternative with x at level g (Ag(x′) 6=

9

Ag(x)), then we simply have:

µg,n+1
x = µg,nx ,

βg,n+1
x = βg,nx .

If they do share an aggregated alternative at level g, our updating equations are given

by:

µg,n+1
x = [βg,nx µg,nx + βg,n,εx ŷn+1

x] / βg,n+1
x , (5)

βg,n+1
x = βg,nx + βg,n,εx , (6)

where βg,nx = (1/σg,nx)2 and βg,n,εx = (1/σg,n,εx)2 are the aggregated precision and measure-

ment precision, respectively. We can relate our belief about the aggregated alternatives

to the disaggregate belief. Using induction, we have

µnx =
1

βnx

[
β0
xµ

0
x +

∑
g∈G

((σg,nx)2 + νgx)−1µg,nx

]
, (7)

βnx = β0
x +

∑
g∈G

((σg,nx)2 + νgx)−1. (8)

Our estimate of the value of the alternative is given by a weighted average of the value

at the different levels of aggregation, where the weights are proportional to our knowledge

of the value at that level of aggregation. That is,

µnx =
β0
x

βnx
µ0
x +

∑
g∈G

wg,nx µg,nx ,

where our weights wg,nx are inversely proportional to the sum of our bias and variance:

wg,nx =
((σg,nx)2 + νgx)

−1

β0
x +

∑
g′∈G

(
(σg

′,n
x)2 + νg

′
x

)−1 .
If we are highly uncertain or have a high level of bias at a certain level of aggregation

we will largely ignore that level. If there is a low bias and high precision we will instead

10

emphasize our estimate at this level of aggregation. It is important to note the impact

of the bias term, νgx. If it were not present, we would continually place emphasis on the

higher levels of aggregation, despite the fact that lower levels of aggregation are likely to

contain more specific information about a particular alternative.

We use approximations to compute the error term νg,nx and the aggregate measure-

ment error (σg,n,εx)2. Mes et al. (2009) propose that we approximate the bias term

νgx = V ar [θx − θgx] by (δg,nx)2, where δg,nx = µg,nx − µ0,n
x is an estimate of the mean of

(θx − θgx). We note that the bias δg,nx can be undefined if we have never measured alter-

native x. We resolve this by approximating the bias by µg,nx − µg
∗,n
x for all g > g∗ and

setting it to 0 for all g ≤ g∗, where g∗ denotes the lowest level of aggregation at which

we have seen an observation. Although this is a logical assumption given the state of

knowledge (we cannot approximate a bias towards a value we know nothing about), it

should also be evident that our value for νg,nx is heavily approximated.

The aggregate measurement error (σg,n,εx)2 can be calculated using analysis of vari-

ance. We will sketch a derivation of the estimate here, but more details can be found

in Mes et al. (2009) and Snijders and Bosker (1999). We first note that at the zeroth

level of aggregation, our aggregate measurement error is simply the disaggregate mea-

surement error, σ0,n,ε
x = λx. The aggregate measurement error at higher levels can be

calculated using the fact that the group variance over a number of subgroups equals the

variance within each subgroup plus the variance between the subgroups. For us, the vari-

ance within each subgroup is a weighted average of the variances λx′ of the disaggregate

alternatives x′ sharing an aggregated alternative at the gth level of aggregation. The

variance between subgroups is given by the sum of squared deviations of the disaggregate

estimates and the aggregate estimates of each alternative. Using the measurements of

each alternative m0
x as our weights, this leads us to the following formula:

(σg,n,εx)2 =
1

m0,n
x

∑
x′∈X g(x)

mg,n
x′

[
λx′ + (µ0,n

x′ − µ
g,n
x′)2

]
. (9)

Mes notes that this approximation depends strongly on the measurements, and hence

11

on the measurement policy. He proposes instead that we place equal weight on each

disaggregate alternative. Then, equation 9 becomes:

(σg,n,εx)2 =
1

|X g(x)|
∑

x′∈X g(x)

[
λx′ + (µ0,n

x′ − µ
g,n
x′)2

]
. (10)

One will note that there exists a similar issue as before, namely that µ0,n
x′ is not defined

if x′ has not been measured yet. The resolution in this case is the same, and we set the

bias term (µ0,n
x′ − µ

g,n
x′)2 to be equal to 0 whenever g ≤ g∗, where g∗ is again the lowest

level of aggregation at which the alternative has been measured.

5 The Knowledge Gradient Policy

Having motivated the need for learning in dynamic programming, we now apply our

knowledge gradient philosophy to ADP. The idea of incorporating learning concepts into

ADP was first introduced by Dearden et al. (1998) and Duff and Barto (1996). Ryzhov

et al. (2010) applied a knowledge gradient algorithm to the two-agent newsvendor problem

modeled using a Markov decision process. Ryzhov and Powell (2010) then derived a

knowledge gradient policy for an ADP setting using a multivariate normal prior. We

extend this idea to hierarchical aggregation here.

Recall that a pure exploitation policy in an approximate dynamic programming con-

text picks the decision x that satisfies

xn = arg max
x

C(Sn, x) + γVn(SM,x(Sn, x)).

We can write Qn(Sn, x) = C(Sn, x) + γVn(SM,x(Sn, x)), in which case our policy

maximizes Qn(Sn, x), which we call our “Q-factor”. A Q-factor is simply a particular type

of post-decision state, Sx = (S, x). In a general dynamic programming context, we can

distinguish between a pre-decision state, a post-decision state, and the next pre-decision

state. The transition from the pre-decision state to the post-decision state (denoted SM,x)

implements our decision and takes into account all resulting non-stochastic transitions.

12

The transition to the next pre-decision state then incorporates the random realizations

of the various stochastic processes driving the system. Although there are variants of the

inverted pendulum problem or other stochastic elements, the post-decision state Sxn will

be equivalent to our next pre-decision state for this problem.

Q-learning is an approach to dynamic programming in which we do not keep track of

the value of a state, but rather keep track of our Q-factors. This is a powerful technique

because it can be applied without a model of the problem environment. We use our post-

decision state variable as an alternative to a Q-factor. Our technique of assigning our

maximum Q-value to our post-decision state variables can hence be viewed as a modified

form of Q-learning.

Our goal is to introduce an explorative element to our approximate dynamic program-

ming policy. A pure exploitation policy assumes that our value function approximation is

accurate, and makes decisions purely on this basis. In practice there are many problems

for which we have little or no prior knowledge of the value function, and for which follow-

ing a pure exploitation policy can lead to poor results. The idea behind the knowledge

gradient policy is that we “choos[e] the measurement that would be optimal if it were our

last chance to learn.” (Ryzhov and Powell, 2009) Suppose we are at state Sn at time n,

and our next decision will be our last opportunity to update our beliefs. In other words,

Vn′ = Vn+1 for all n′ ≥ n + 1. Under these conditions, our optimal action at time n is

given by

x∗n = arg max
x

C(Sn, x) + γExnVn+1(S
M,x(Sn, x)), (11)

where our expectation Exn is given with respect to our filtration Fn up to time n and

our decision xn. We note the similarity to Bellman’s equation, except that we replace

our value function V (Sn) by our updated value function approximation Vn+1(Sn). The

knowledge gradient algorithm seeks to maximize the improvement made by the resulting

change from Vn to Vn + 1. Recall that our value function approximation is updated after

we transiton from our post-decision state Sxn to our next pre-decision state, Sn+1. In

13

order to evaluate equation 11, we need to expand the Q-factor of action x as:

Q∗n(Sn, x) = C(Sn, x) + γExnVn+1

(
SM,x(Sn, x)

)
,

= C(Sn, x) + γ
∑
Sn+1

P(Sn+1|Sxn)Exn max
x′

Qn+1(Sn+1, x
′).

We see that our transition matrix enters the equation again. We will see momentarily

how we can use simulation to deal with computationally intractable transition matrices

or continuous state spaces, but for now we proceed under the assumption that we can

compute this value (or an estimate thereof). In the following sections we will derive our

knowledge gradient value using this expanded Q-factor.

5.1 Bayesian Model for ADP

In order to compute a knowledge gradient value we first extend our Bayesian aggregation

model to an ADP setting. Consider an infinite-horizon dynamic programming problem

with state space S. Our set of possible decisions is given by X , and we require a discount

factor γ ∈ (0, 1). Assuming a deterministic contribution function C(S, x), we can write

our objective function as

sup
π

∞∑
n=0

γnC(Sn, X
π
n (Sn)),

where we take the maximum over all policy rules π, and use Xπ
n to denote the decision

rule associated with policy π. We let R(Sx) be the total infinite-horizon discounted

reward that we would receive if we were to start in post-decision state Sx. Because

our transition from our post-decision states to our next pre-decision states are random,

R(Sx) is a random variable. The true value of our state is the expectation of this random

variable: V (Sx) = E [R(Sx)]. As a part of our model we assume that R(Sx) has a

normal distribution with unknown mean V (Sx) and known variance λ(Sx). In practice

we can justify normality using a central limit argument (see Dearden et al. (1998) for

details), but it is usually not the case that λ(Sx) is known. We nevertheless proceed

with this assumption, and consider λ(Sx) a tunable parameter in cases for which it is

unknown. We also assume in our model that it is possible to obtain unbiased observation

14

R̂(Sxn) ∼ N ((V (Sxn), λ(Sxn)). We carry this assumption over from Ryzhov and Powell

(2010) and Dearden et al. (1998). It is a standard assumption when dealing with optimal

learning problems but does not hold in approximate dynamic programming because we

cannot obtain unbiased observations of the true value of a state. The best we can do

is approximate R̂ using our biased approximation of the value of our post-decision state

ν̂n+1:

ν̂n+1 = max
x

C(Sn+1, x) + γVn(SM,x(Sn+1, x)).

The Bayesian model with hierachical aggregation places a univariate Gaussian prior

over the value of our disaggregate alternatives. We use V0(S) and β0(S) to denote our prior

estimate of the value of our state S and the precision of our prior estimate, respectively.

We use µx,gn to denote our time n estimate of the value function for state x at level g. βx,gn

represents the precision of our approximation µx,gn . Given an observation of the value of

Sx
′
n , we can use the updating equations presented in section 4 to write:

Vn+1(s) =
∑
g∈G

wx,gn+1µ
x,g
n+1. (12)

Our updated means at each level of aggregation µx,gn+1 are given by

µx,gn+1 =


βx,gn µg,xn +βx,g,εn R̂(Sx

′
n)

βx,gn+1
if x ∈ X g(Sx

′
n)

µx,gn otherwise

and our updated precisions are given by

βx,gn+1 =


βx,gn + βx,g,εn if x ∈ X g(Sx

′
n)

βx,gn otherwise

Finally, we can write our updated weights as

wx,gn+1 =

(
(βx,gn+1)

−1 + νx,g
)−1

βx,0 +
∑

g′∈G
(
(βx,gn+1)

−1 + νx,g′
)−1 .

15

5.2 Calculating the Knowledge Gradient

In order to compute our knowledge gradient we are required to estimate our future value

function approximation given a particular decision x′, Vn+1(S
M,x(Sn+1, x′)), which is re-

quired for determining our updated Q-factor Qn+1(Sn+1, x
′). We use use µx,gn to denote

our time n estimate of the value function for state x at level g. We can write the condi-

tional distribution of Vn+1 given our filtration Fn and our decision x at time n as:

Vn+1(S
x′) = Ṽn+1(S

x′) + σ̃(Sx
′
)Z, (13)

where

Ṽn+1(S
x′) =

∑
g∈G

wx
′,g
n+1µ

x′,g
n +

∑
g∈G(Sx,Sx′n)

wx
′,g
n+1

βx,g,εn

βx,gn + βx,g,εn
(Vn(Sx)− µx,gn) , (14)

σ̃(Sx
′
) =

∑
g∈G(Sxn,Sx

′)

wx
′,g
n+1

(
βx,g,εn

√
(1/βSxn) + λ(Sx)

βx,gn + βx,g,εn

)
. (15)

Note that we have picked σ̃(s, Sxn) such that our normal random variable Z is no longer

indexed by s and is independent of our post-decision state Sxn. We now rewrite our

Q-factor in terms of an expectation of the conditional distribution of Vn+1(s):

Q∗n(Sn, x) = Emax
x′

Qn+1 (Sn+1(x
′)) (16)

= Emax
x′

(ax
′

n + bx
′

n Z), (17)

where

ax
′

n = C(Sn+1, x′) + γṼn+1(S
x′), (18)

bx
′

n = γσ̃(Sx
′
). (19)

An algorithm for computing this expectation of a maximum is presented in Frazier

16

et al. (2009). We set

Emax
x′

(ax
′

n + bx
′

n Z) = (max
x′

anx′) +
∑
y∈A

(bny+1 − bny)f(−|cy|), (20)

where A is the set of all y for which we can find numbers cy−1 ≤ cy for which y =

arg maxx′ a
n
x′ + bnx′z for z ∈ (cy−1, cy), with ties broken by the largest-index rule. The

elements of A are renumbered in order of increasing bnx′ , and our function f(z) = zΦ(z) +

φ(z). Using this computation, we can define our knowledge gradient to be the difference

νKGn (Sxn, S
n+1) = Exn max

x′
(ax

′

n + bx
′

n Z)−max
x′

ax
′

n

=
∑
y∈A

(by+1
n − byn)f(−|cy|).

In other words, our knowledge gradient is the expected improvement in our estimate of

maxQn+1(Sn+1, x
′) after taking action x from starting state Sn.

5.3 The Knowledge Gradient Policy for ADP

We now incorporate our knowledge gradient value νKG,x into our policy. Recall that our

optimal action under the knowledge gradient policy is given by x∗n = arg maxxQn(Sn, x),

where our Q-factor was given by:

Qn(Sn, x) = C(Sn, x) + γ
∑
Sn+1

P(Sn+1|Sxn)Exn max
x′

Qn+1(Sn+1, x
′).

We can rewrite the sum on the right hand side as

∑
Sn+1

P(Sn+1|Sxn) Emax
x′

Qn+1(Sn+1, x
′)

=
∑
Sn+1

P(Sn+1|Sxn) max
x′

Qn(Sn+1, x
′)

=
∑
Sn+1

P(Sn+1|Sxn) νKGn (Sxn, Sn+1).

We now use the fact that our value function approximation of the post-decision state is

17

in fact an estimate of our expected Q-factor to write

∑
Sn+1

P (Sn+1|Sxn) max
x′

Qn(Sn+1, x
′) = Vn(Sxn). (21)

Finally, we can rewrite our optimal action given by equation 11 as

x∗n = arg max
x

C(Sn, x) + γ

(
Vn(Sxn) +

∑
Sn+1

P (Sn+1|Sxn)νKGn (Sxn, Sn+1)

)
(22)

We note that if we eliminate the last term of the equation involving our sum of

weighted KG factors, we have the pure exploitation rule given in equation 5 at the

beginning of this chapter. We modify the rule, however, using a KG “bonus” value which

reflects the uncertainty in our value function approximation. We know have an explicit,

quantifiable balance between the expected value of information and the expected reward

and value of our future state which helps us solve the problem of balancing exploitation

and exploration. When we are uncertain about our value function, decisions with high KG

values may be preferred to our pure exploitation decision. As we become more certain, our

KG factors become smaller and we gradually transition towards an exploitation strategy.

6 Results

We applied our policy to the inverted pendulum problem. Traditionally, the efficacy of a

policy is determined by examining the sum of the discounted contributions:

Cπ =
∞∑
i=0

C(Si, X
π(Si)). (23)

For our problem the contribution is determined by the reinforcement signal. Since

this number is always either negative or 0, this is a cost-minimization problem. We used

a mixed exploration and an epsilon-greedy policy in order to benchmark our results. We

tuned the mixed exploration policy paramter ρ (our probability of exploration) to a value

of .01. We also tuned an epsilon-greedy policy for which the probability of exploration

18

took the form

εn =
a

a+ n
,

where we set a = 100 for our experiments.

We chose to amplify our reinforcement signal by a factor of 100 in order to avoid

working with excessively small numbers. This is merely a rescaling of the problem and

had no effect on the relative results. We also used a discount factor of γ = .9999; our

discount factor had to be close to 1 as we were comparing contributions over tens of

thousands of iterations. The dynamics of the system were identical to those presented

in Chapter 1, and we ran each policy for 100 trials, each of which consisted of 50, 000

iterations, or 1000 seconds. Finally, we used a basic symmetric aggregation structure,

in which we discretized each dimension into 2G−g elements at level g for all g ∈ 0 . . . G,

where G = 6.

We can see in Table 1 that our knowledge gradient policy significantly outperforms

both an epsilon-greedy and a mixed exploration policy when considering our dynamic

programming objective function. Although this is a first indicator of success, we also

examine alternative objective functions. The objective given in equation 23 is a reasonable

approach for dynamic programming, but its may not be the most appropriate mechanism

for determining success in the inverted pendulum task as a whole.

Table 1: Comparative Results using Traditional DP Objective

Mean Avg. SE
HKG -648.03 20.95
Epsilon-Greedy -940.56 50.76
Mixed Exploration -993.43 29.74

A number of other scoring mechanisms present themselves for the inverted pendulum

task. In particular, we were interested to see how each policy maximizes the amount

learned in a given iteration. We therefore focused on examining how long a given policy

was able to maintain a balanced system after a given set of trials (failures). We show the

mean balancing time at an individual trial for our three policies below in Figure 2(a). We

can see that, generally speaking our HKG policy outperforms both the epsilon-greedy and

19

the mixed exploration policies. As we would expect, our epsilon-greedy performs better

than our mixed exploration policy, which is too static and does not take into account the

increasing accuracy of the value function approximation over time.

(a) Mean Balancing Time vs. Failures (b) Median Balancing Times vs. failures

Figure 2: Comparative Balancing Times vs. Failures

Note that despite sampling 100 trials for each policy there is still a large amount of

volatility in our results. This is in large part due to the inherent volatility of our problem.

In one sample path for our epsilon-greedy policy, for example, the system failed twice in

the first three seconds but never failed again. Similar sample paths were present for each

of these policies. For this reason, we also compared the median failure times after each

iteration in Figure 2(b). In this case we see a similar pattern but also observe a more

clear distinction between the policies.

An alternative way of defining success in this task is to determine how many failures

occurred during a given trial. Such a policy is similar to our dynamic programming

objective, but we now choose to ignore discounting. We report the statistics regarding

total failures below in Table 2. We can see that the same ordering of policies is maintained.

It is also interesting to note that the distinction between epsilon-greedy and a mixed

exploration policy is more pronounced here. It seems that reducing the probability of

exploration over time helps reduce failures in later iterations.

In addition to validating the value of our knowledge gradient algorithm, it is important

to note that we succesfully used aggregation to approximate our value function. This is

20

Table 2: Comparative Results using Total Failures

Mean Avg. SE
HKG 97.36 3.21
Epsilon-Greedy 127.11 8.80
Mixed Exploration 152.61 7.74

not at all given, as we are bootstrapping a truth using a fairly general updating scheme.

We show comparative plots of the value function in the θ vs. θ̇ dimensions under our

three policies below. Note that we constrain ourselves to the most interesting region of

the state space, and that our knowledge gradient policy shows the finest approximation

of this region, and mixed exploration shows the coarsest approximation.

(a) HKG (b) Epsilon-Greedy (c) Mixed Exploration

Figure 3: Value Function Approximations

7 Conclusion

We have examined the validity of an approximate dynamic programming policy towards

solving the inverted pendulum task. We have seen that all of our policies were able

to gradually improve performance over time by learning the value function using an

aggregation-based approach. This is signficant because our approach starts with no a

priori information about the system. The only modification to the reinforcement signal

was the use of a time-decaying signal trace to update states visited in the past, which was

necessary to heuristically solve the credit assignment problem. We note, however, that

this is a generic solution to the credit assignment problem and is in no way particular to

our problem.

In addition to the success of an ADP approach, we also saw that our knowledge

21

gradient policy outperformed an epsilon-greedy and a mixed exploration policy using a

number of different objective functions. This is somewhat remarkable given that our

updating procedure explicitly violates a number of modeling assumptions present in our

derivation of the policy, so we examine possible reasons for the success of our algorithm

despite these modeling issues.

The primary issue with our model is that we are not able to update any of our states

until we fail. This makes the definition of the “best possible measurement given that this

will be our last chance to learn” tricky. If our knowledge gradient policy were “correctly”

adjusted to match this inuition, for example, we would always choose to fail (and hence

update a large number of states) given a choice to do so. In our implementation, however,

we ignore the lag of information. What we are claiming is that the difference between

receiving information and receiving information later is negligible. In many problems this

claim would not hold, but it is not entirely unreasonable in the context of the inverted

pendulum task. Our discount factor γ is close to 1 and our trial times are relatively short,

particularly in the early iterations when we are most interested in the value of learning.

A secondary reason for the success of our algorithm is that it takes both the value func-

tion approximation and our confidence in the value function approximation into account.

Whereas both our competing policies explore the state space randomly, the knowledge

gradient policy explores intelligently. This means that in later iterations the KG policy

will not be interested in exploring near-failure states regardless of the confidence differ-

ential, whereas the determination of which state to explore is entirely random for our

alternative policies.

Although the results presented here are promising, more work remains to be done. In

particular, the performance of our algorithm in the long run remains an open question.

Although our focus here was on learning, and hence on short-term results, it remains to

be seen whether an ADP approach can come close to matching the performance shown by

algorithms such as those presented in Barto et al. (1983). An additional area of further

research is the development of a more accurate knowledge gradient policy for lagged

information processes. One possible approach is to calculate an approximate discount

22

factor to scale the value of future information. In our inverted pendulum problem, for

example, we could store a smoothed estimate of trial times in order to compute an

approximate discount factor.

In conclusion, we find that approximate dynamic programming is able to achieve suc-

cess in the inverted pendulum problem. Moreover, we find that a knowledge gradient

outperforms both an epsilon-greedy and a mixed exploration policy using both the tra-

ditional dynamic programming objective and a series of alternative problem-dependent

objectives. Although this research shows the significant promise of ADP and knowledge

gradient algorithms, we also note that significant work remains to be done in the future

to examine possible refinements to our algorithm and extensions to other problems.

23

References

Anderson, C. (1989). Learning to control an inverted pendulum using neural networks.

Control Systems Magazine, 9(3):31–37.

Barto, A., Sutton, R., and Anderson, C. (1983). Neuronlike adaptive elements that can

solve difficult learning problems. IEEE Transcations on Systems, Man, and Cybernet-

ics, SMC–13(5):835–846.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Chick, S., Branke, J., and Schmidt, C. (2007). New myopic sequential sampling proce-

dures. INFORMS Journal on Computing, 22(1):71–80.

Connell, M. and Utgoff, P. (1987). Learning to control a dynamical physical system.

Proceedings of the American Association for Artificial Intelligence, 2:456–640.

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian q-learning. In Proceedings

of the 14th conference on Uncertainty in Artificial Intelligence, pages 761–768.

Duff, M. and Barto, A. (1996). Local bandit approximation for optimal learning problems.

Advances in Neural Information Processing Systems, 9:1019–1025.

Engel, Y., Mannor, S., and Meir, R. (2003). Bayes meets bellman: The gaussian process

approach to temporal difference learning. In Proceedings of the 20th International

Conference on Machine Learning, pages 154–161.

Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement learning with gaussian process

priors. In Proceedings of the 22nd International Conference on Machine Learning, pages

208–215.

Frazier, P., Powell, W., and Dayanik, S. (2008). A knowledge gradient policy for sequential

information collection. SIAM Journal on Control and Optimization, 47(5):2410–2439.

Frazier, P., Powell, W. B., and Dayanik, S. (2009). The knowledge-gradient policy for

correlated normal beliefs. INFORMS Journal on Computing, 21(4):599–613.

24

George, A., Powell, W. B., and Kulkarni, S. (2008). Value function approximation using

multiple aggregation for multiattribute resource management. Journal of Machine

Learning Research, 9:2079–2111.

Gupta, S. S. and Miescke, K. J. (1996). Bayesian look ahead one-stage sampling alloca-

tions for selection of the best population. Journal of Statistical Planning and Inference,

54(2):229–244.

Mes, M., Powell, W. B., and Frazier, P. (2009). Hierarchical knowledge gradient for

sequential sampling. Journal of Machine Learning Research, pages 1–33.

Michie, D. and Chambers, R. (1968). Boxes: An experiment in adaptive control. In

Michie, D., editor, Machine Intelligence. Oliver and Boyd, Edinburgh, UK.

Negoescu, D. (2011). Optimal learning for drug discovery in ewing’s sarchoma. To appear.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curse of Dimen-

sionality. Wiley-Interscience.

Powell, W. B. and Frazier, P. (2008). Optimal learning. INFORMS, Tutorials:213–246.

Roberge, J. K. (1960). The mechanical seal. PhD thesis, M.I.T., Cambridge, Mas-

sachusetts.

Rosen, B., Goodwin, J., and Vidal, J. (1988). State recurrence learning. In First Annual

International Neural Neotwork Society Meeting, Boston, MA.

Ryzhov, I. O. and Powell, W. B. (2009). The knowledge gradient algorithm for online

subset selection. In Proceedings of the 2009 IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, pages 137–144, Nashville, TN.

Ryzhov, I. O. and Powell, W. B. (2010). Approximate dynamic programming with corre-

lated bayesian beliefs. In Forty-Eighth Annual Allerton Conference on Communication,

Control, and Computing.

25

Ryzhov, I. O. and Powell, W. B. (2011). Information collection on a graph. Operations

Research, 59(1):188–201.

Ryzhov, I. O., Valdez-Vivas, M. R., and Powell, W. B. (2010). Optimal learning of

transition probabilities in the two-agent newsvendor problem. In Johansson, B., Jain,

S., Montoya-Torres, J., Hugan, J., and Yucesan, E., editors, Proceedings of the 2010

Winter Simulation Conference, pages 1088–1098.

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. IBM

Journal of Research Development, 3(3).

Selfridge, O., Sutton, R., and Barto, A. (1985). Training and tracking in robotics. In

Proceedings of International Joint Conferences on Artificial Intelligence, pages 670–

672.

Silver, E. (1963). Markov decision processes with uncertain transition probabilities or

rewards. Technical Report 1, MIT Operations Research Center.

Snijders, T. A. and Bosker, R. J. (1999). Multilevel analysis: An introduction to basic

and advanced multilevel modeling. Sage Publications Ltd.

26

