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Abstract

We study the effect of spike shape and dendritic properties on neuronal firing dynamics and synchro-
nization. To do this, we present a multi-compartment leaky integrate-and-fire model of a neuron, which
can effectively capture complex dendritic trees that passively transmit current. Due to the tractability
of our model, we can derive the analytic solution in both spiking and non-spiking modes. We use the
solution to construct the return map that captures the dynamics of the system, and we can characterize
the excitability of the system in response to variations in the spike shape and dendritic properties. In
the second part of the paper, we use the theory of weakly coupled oscillators to derive an equivalent
phase model and phase response curve of our general system. This enables the examination of firing
synchronization a system of two coupled multi-compartment LIF neurons. We use this to determine
which spike shapes result in synchrony, anti-synchrony, or bistability, and the corresponding robustness
of the phase-locking behavior.

Introduction

Neurons have highly intricate and extensive spatial structure, but are often modeled as single entities, with
no explicit description of dendrites. Single-compartment models are incredibly useful, capturing a very
wide range of neuronal phenomena [3]. However, biological neurons are much more spatially extensive,
with potentially vast dendritic trees. This allows for greater heterogeneity in the structure and behavior of
single neurons. For instance, the ion channel types and concentrations on the membrane can vary across
dendrites and the axon of the same neuron [13, 14, 23], enabling richer firing patterns and behavior. Recent
compartmental models of neurons show that the wide variety of firing patterns observed in neocortical
neurons can be attributed to the dendritic structure [17]. It was shown that complex branching dendritic
trees with certain properties can be represented equivalently using a single dendritic cable [19]. The dendritic
cable model can be further simplified into a series of passively connected discrete compartments. Even a two-
compartment leaky integrate-and-fire model captures complex behavior that a single compartment model
cannot replicate [23]. Thus, in order to further examine the properties and more complex behaviors of
dendritically-extended models, we focus on the multi-compartment description of neurons, in addition to
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the effects of the passive compartments with various dendritic architectures. However, models with large
numbers of compartments can also be difficult to work with, and so for our synchronization studies, we pay
special attention to the two-compartment neuron.

Many models also typically model each spike as an all-or-nothing event, ignoring the complexity of a variable
spike shape and its effects on the dynamics of the neurons. Although these models are successful in capturing
a wide variety of behavior, there is evidence [6] that the stimulus can affect the spike shape and play an
important role in the dynamics of neurons and neural networks. Mammalian central neurons express a very
large number of diverse ion channels, which allows neurons to generate spikes with different shapes, frequen-
cies, and patterns [2]. Additionally, Juusola et al. showed that spike codes that take advantage of variability
in the spike shape have higher rates of information transfer and reliability. They found experimental evidence
that suggests that biological neurons in the hippocampus utilize these non-classical spike codes [12]. This
diversity in spiking behavior invariably contributes to the dynamics of the complex networks in the brain.
Most models today ignore many of these effects, resulting in an oversimplification that may entirely remove
computationally relevant dynamical behavior. For instance, the potential throughput of information transfer
is limited if the variability in spike shape is overlooked. In our exploration, we will more closely examine
how the dynamics and synchronization properties of neurons are affected by the variability of spike shapes.

Neurons can be coupled with either chemical or electrical connections. In the cortex, networks of inhibitory
interneurons are electrically coupled with gap junctions. Although the importance of these gap junctions is
not very well understood, electrical studies suggest that they play a role in helping to synchronize oscillatory
behavior or generate particular neural rhythms [18, 10, 7]. In particular, the high incidence of gap junctions
on the dendrites of cortical interneurons is thought to help coordinate synchronous oscillatory behavior
[1]. Experimental studies have lent support for the existence of this dendro-dendritic electrical coupling,
and theoretical studies have examined their dynamical consequences [15]. Most models of neural networks
assume chemical coupling with synapses. However, the prevalence of gap junctions in the brain suggests
that these models that ignore electrical coupling in neural circuits may also forgo important dynamical
behavior, such as that related to firing synchronization. For example, it was shown that the robustness and
stability of phase-locked states between two electrically-coupled ball-and-stick neurons is highly dependent
on the location of the gap junction along the dendrite [21]. Here, we extend the work of Lewis and Rinzel
to explore how the interaction between spike shape, dendritic properties, and electrical coupling affect the
synchronization properties of the neuron.

This paper is divided into two overall parts. The goal of the first part is to understand how dendrites affect
the firing dynamics of the multi-compartment leaky integrate-and-fire (LIF ) neuron. To do so, we present
a mathematical description of the multi-compartment leaky integrate-and-fire (LIF ) neuron, focusing on
two particular dendritic architectures: the first is in which the dendrites are aligned in a chain with the
soma at one end, and the second is where each dendrite is attached directly to the soma. However, we will
show that much of our analysis can be extended to arbitrary dendritic topologies. The solutions for both
the non-spiking and spiking portions of the model are derived. These solutions are then used to construct
a return map, which is a function that maps the state of each dendritic compartment at the end of the
preceding spike to a state at the end of the next spike. This map reduces the dimensionality of the full
system and enables closer examination of the spiking dynamics of the neuron. We use the map to search
for changes in excitability. This enables the classification of firing behavior into Hodgkin’s type I or type
II excitability. A neuron classified as type I can fire at arbitrarily low oscillations near the onset of stable
firing. For a type II neuron, the onset of periodic oscillations occurs with a nonzero frequency, and so there
is a region of bistability where the initial state of the neuron determines whether it will fire periodically or
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not [11]. A reasonable way to ascertain the excitability of a neuron is to examine the f-I curves of the cell,
where the firing frequency of the neuron is varied against the injected somatic current, and they provide a
concise illustration of the firing properties of the cell. We use these diagrams extensively in the results of
the first part to determine the effects of varying the parameters of the model on the firing dynamics of the
neuron. The width of the bistable region can be used to characterize excitability (the range of the value
of injected current for which the neuron is bistable). This metric is easily discernible in these bifurcation
diagrams, and so the effect of additional passive compartments can be ascertained. We also consider the
differences between homogeneous and heterogeneous settings of parameters across dendrites. We find that
dendritic properties can significantly change the firing dynamics of the system.

In the second part of this paper, we explore the synchronization dynamics of multi-compartment LIF neurons
electrically-coupled at their dendrites. We assume that the neurons, when isolated, are in the stable periodic
firing regime. We use the theory of weakly coupled oscillators [9, 24] to derive the phase model, which
is a single scalar differential equation that describes the evolution of the phase difference of two multi-
compartment LIF neurons electrically-coupled at their dendrites. This equation requires the specification of
the infinitesimal phase response curve (iPRC ), which describes how the phase of a spiking neuron responds
to infinitesimal impulses of injected current. Owing to the tractability of our model, we are able to derive
the general iPRC, in an analytical form, for every compartment in our model, allowing us to explore how
the spike shape affects the response properties of each compartment in the model. As an example case, we
examine the synchronization properties of two two-compartment neurons with electrical coupling at their
dendrites. We explore the effect of changing spike shapes and dendritic properties on the phase-locking
of the system. Finally, the robustness to heterogeneity in firing frequency of these phase-locked states in
response to differences in the frequency between the coupled neurons is explored as in [21]. Spike shape has
a significant effect on the existence, robustness, and stability of phase locking.

Model

The simple leaky integrate-and-fire neuron is extended by adding spherical dendritic compartments which
exchange current with each other and the soma via passive diffusion. We present our multi-compartment
leaky integrate-and-fire neuron initially by focusing on two dendritic topologies. The first we will call the
“branch” model, where all n dendrites are attached to the soma and nothing else. The second model is called
the “chain” model where all compartments are arranged in a linear chain, with each compartment being
connected to at most two other compartments, and the soma is at one of the ends.

In the branch model, let V̄i be the voltage of the i-th dendrite measured in mV, V̄S is the somatic voltage
measured in mV, Cm is the membrane capacitance measured in µF/cm2, gLDi

is the dendritic leakage
conductance measured in mS/cm2, ELDi

is the leakage reversal potential of the i-th dendrite measured in
mV, Īi is the injected dendritic current measured in µA/cm2, gCi

is the coupling conductance measured in
mS, and Ai is the surface area of the dendritic compartment measured in cm2. Then, the dendritic voltages
are governed by the following differential equation:

Cm
dV̄i
dt̄

= −gLDi
(V̄i − ELDi

) + Īi +
gCi

Ai
(V̄S − V̄i) (1)
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When the neuron is not spiking, the somatic voltage is governed by the differential equation:

Cm
dV̄S
dt̄

= −gLS(V̄S − ELS) + ĪS +
∑
i

gCi

AS
(V̄i − V̄S) (2)

Where gLS is the somatic leakage conductance, ELS is the somatic leakage reversal potential, ĪS is the
injected somatic current, and AS is the surface area of the soma. We define t̄js to be the j-th time at which
the soma reaches the threshold potential V̄th and the j-th spike is elicited. When the neuron spikes, however,
the somatic potential is governed entirely by the spike shape h̄(t̄− t̄js) where the spike begins at time t̄js:

V̄S(t̄) = h̄(t̄− t̄js) (3)

We fix the duration of the spike to T̄a, after which the neuron stops spiking, the somatic voltage is reset to
the value V̄R, and the system continues to evolve.

In the chain model, we have a different set of differential equations. Note that the first n − 1 dendrites
are connected to both the preceding and subsequent dendrites, and the n-th dendrite is only connected to
the previous compartment. Using the notation above, we write the equation for the voltage of dendrite
i ∈ [2, n− 1]:

Cm
dV̄i
dt̄

= −gLDi(V̄i − ELDi) + Īi +
gCi

Ai
(V̄i−1 − V̄i) +

gCi+1

Ai
(V̄i+1 − V̄i) (4)

For the dendrites at the ends, we have:

Cm
dV̄1

dt̄
= −gLD1(V̄1 − ELD1) + Ī1 +

gC1

A1
(V̄S − V̄1) +

gC2

A1
(V̄2 − V̄1)

Cm
dV̄n
dt̄

= −gLDn(V̄n − ELDn) + Īn +
gCn

An
(V̄n−1 − V̄n)

(5)

Finally, for the somatic membrane potential, we have:

Cm
dV̄S
dt̄

= −gLS(V̄S − ELS) + ĪS +
gC1

AS
(V̄1 − V̄S) (6)

Parameters
V̄n membrane potential of compartment n
Īn current injected into compartment n
t̄ dimensional time
Cm membrane capacitance
gLDi

dendritic leakage conductance
gLS somatic leakage conductance
ELDi

dendritic leakage reversal potential
ELS somatic leakage reversal potential
An surface area of compartment n
gCi

coupling conductance

Table 1: Lists each dimensional parameter and
its physical significance.

Similar to the branch model, the somatic potential is
fully governed by the spike shape h̄(t̄ − t̄js) when the
neuron is spiking.

Nondimensionalization

We nondimensionalize the system using the following
substitutions, with n = 1, 2, ..., S:

Vn(t) =
V̄n(t̄/τ1)− ELD1

V̄th − ELD1

and so Vth = 1 (7)

In =
Īn

gLD1
(V̄th − ELD1

)
(8)
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τi =
Cm
gLDi

where τS =
Cm
gLS

(9)

gi =
gCi

ASgLD1

(10)

αi =
AS
Ai

(11)

βi =
ELDi

− ELD1

V̄th − ELD1

where βS =
ELS − ELD1

V̄th − ELD1

(12)

γDi
=
gLDi

gLD1

where γS =
gLS
gLD1

(13)

Applying these transformations to the dimensional representation of the “chain” model yields the following
non-dimensionalized system of differential equations:

dV chain1

dt
= −V chain1 + I1 + α1g1(V chainS − V chain1 ) + α1g2(V chain2 − V chain1 )

dV chaini

dt
= −γi(V chaini − βi) + Ii + αigi(V

chain
i−1 − V chaini ) + αigi+1(V chaini+1 − V chaini )

for i ∈ [2, n− 1]

dV chainn

dt
= −γn(V chainn − βn) + In + αngn(V chainn−1 − V chainn )

dV chain
S

dt = −γS(V chainS − βS) + IS + g1(V chain1 − V chainS ) if t /∈ (ts, t
j
s + Ta]

V chainS (t) = h(t− tjs) if t ∈ (ts, t
j
s + Ta]

(14)

In the “branch” model, we nondimensionalize the system using the same transformations:

dV branchi

dt
= −γi(V branchi − βi) + Ii + αigi(V

branch
S − V branchi )

dV branch
S

dt = −γS(V branchS − βS) + IS +
∑n
i=1 gi(V

branch
i − V branchS ) if t /∈ (ts, t

j
s + Ta]

V branchS (t) = h(t− tjs) if t ∈ (ts, t
j
s + Ta]

(15)

Matrix formulation

The coefficients of the above dimensional and non-dimensional systems can be conveniently represented
as matrices. This matrix formulation is sufficiently general to represent any dendritic topology, and we
will conduct much of our analysis in this form. We re-write the non-dimensionalized system of differential
equations in the following form:

dV

dt
= ANSV + bNS if the neuron is not spiking (16)

Where ANS is an (n+ 1)× (n+ 1) matrix of coefficients, V is a vector where the first n elements represent
the non-dimensional dendritic voltage Vi, and the (n+1)-th element represents the non-dimensional somatic
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voltage VS . 
dVdendrites

dt
= ASVdendrites + bS(t)

VS(t) = h(t− tjs)
if the neuron is spiking (17)

Where Vdendrites is an n-dimensional vector of non-dimensional dendritic membrane potentials. Here, AS

has one fewer row and column since the differential equation no longer governs the somatic voltage. We
also define biologically-realistic settings of the parameters in our model to be such that all α, g, and γ are
non-negative.

Non-spiking solution

If the neuron is not spiking, then the two models we presented are simply different ways to specify the matrix
ANS and vector bNS in the system dV

dt = ANSV + bNS where for the “branch” model, we have:

ANSbranch =



−1− α1g1 0 0 · · · α1g1

0 −γ2 − α2g2 0 · · · α2g2

0 0 −γ3 − α3g3 · · · α3g3

...
...

...
. . .

...
g1 g2 g3 · · · −γS −

∑n
i=1 gi



and bNSbranch =


I1

γ2β2 + I2
...

γSβS + IS



(18)

And for the “chain” model, we have:

ANSchain =



−1− α1g1 − α1g2 α1g2 0 · · · α1g1

α2g2 −γ2 − α2g2 − α2g3 α2g3 · · · 0

0 α3g3 −γ3 − α3g3 − α3g4 · · · 0
...

...
...

. . .
...

g1 0 0 · · · −γS − g1



and bNSchain =


I1

γ2β2 + I2
...

γSβS + IS



(19)

We diagonalize the matrix ANS = SNSΛNS(SNS)−1 where ΛNS is the Jordan matrix containing the eigen-
values of ANS , and SNS is the matrix with corresponding eigenvectors in each column. So then solution of
any first-order linear differential equation is:

VNS(t) = Vinf + SNS exp{ΛNSt}(SNS)−1 · (V0 −Vinf ) where (20)

Vinf = −(ANS)−1b (21)
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With biologically-realistic values for the parameters, the eigenvalues are negative and real, and so as t→∞,
exp{ΛNSt} will approach the zero matrix, and so VNS(t) will approach Vinf .

The non-spiking solution can be expressed as a map that takes Vj = [V j1 , ..., V
j
n , V

j
S ], which is the vector con-

taining the initial values of the membrane potentials of each compartment, toVj+ 1
2 = [V

j+ 1
2

1 , ..., V
j+ 1

2
n , V

j+ 1
2

S ],
which is the vector of the membrane potentials at the onset of the next spike.

ΦNS : Vj → Vj+ 1
2 = VNS(t∗) (22)

If the neuron will not spike, then it will simply output Vinf . Computing this map involves finding the
earliest time t∗ at which VS ≥ Vthresh. The value of t∗ can be computed as the solution to the transcendental
equation:

V NSS (t∗) = Vinf,S +

n∑
i=0

[SNS exp{ΛNSt∗}(SNS)−1]n+1,i · (V0,i −Vinf,i) = Vthresh (23)

We compute the solution of this equation numerically.

Spiking solution

Once the neuron is spiking, the system adheres to a different set of first-order linear differential equations.
In the spiking system, the vector bS(t) is now time-dependent, and both AS and bS(t) have one fewer
dimension since the somatic voltage is entirely described by the spike shape h(t). For the “branch” model,
we have:

ASbranch =


−1− α1g1 0 · · · 0

0 −γ2 − α2g2 · · · 0
...

...
. . .

...
0 0 · · · −γn − αngn



and bSbranch(t) =


α1g1h(t) + I1

α2g2h(t) + γ2β2 + I2
...

αngnh(t) + γnβn + In


(24)

For the “chain” model, we have:

ASchain =



−1− α1g1 − α1g2 α1g2 0 · · · 0

α2g2 −γ2 − α2g2 α2g3 · · · 0

0 α3g3 −γ3 − α3g3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −γn − αngn



and bSchain(t) =


α1g1h(t) + I1

γ2β2 + I2
...

γnβn + In



(25)

Notice that AS is the top-left n × n submatrix of ANS , and so is exactly the same as ANS with the last
row and last column removed. We move the dependency on the somatic voltage into the vector bS(t). We
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again diagonalize this matrix AS = SSΛS(SS)−1. Notice that for the “branch” model, since AS is diagonal,
SS = (SS)−1 = I and ΛS = AS . The spiking solution is then:

VS(t) = SS exp{ΛS(t− T0)} ·
(

(SS)−1V(T0) + exp{ΛST0}
ˆ t

T0

exp{−ΛSs}(SS)−1bS(s) ds

)
(26)

The spiking solution can also be expressed as a map that takes Vj+ 1
2 = [V

j+ 1
2

1 , ..., V
j+ 1

2
n ], the dendritic

membrane potentials at spike onset, to Vj+1 = [V j+1
1 , ..., V j+1

n ], which is the vector of the membrane
potentials at the end of the spike.

ΦS : Vj+ 1
2 → Vj+1 = VS(Ta) (27)

Generalization to arbitrary dendritic topologies

Extending our “chain” and “branch” models, we can represent any multi-compartment neuron with multiple
passive connections using our matrix formulation. This generalization will show that our analysis of the
general matrix form of our model is extendable to arbitrary dendritic topologies. The coefficient matrix
ANS can be decomposed into a sum of matrices:

ANS = L+
∑
i6=j

1{i connected to j}Ci,j (28)

The first matrix L is a diagonal matrix representing the intrinsic leak current for each compartment where
the m-th diagonal element is −γm for all m and the matrix is zero everywhere else.

L =



−1 0 0 · · · 0

0 −γ2 0 · · · 0

0 0 −γ3 · · · 0
...

...
...

. . . · · ·
0 0 0 · · · −γS

 (29)

The term 1{i connected to j} indicates whether a connection exists between compartment i and compartment
j. If such a connection exists, then 1{i connected to j} = 1, otherwise 1{i connected to j} = 0. The term
Ci,j is a matrix that represents the additional terms which characterize the transfer of charge across the
connection between compartments i and j.

Ci,j =



. . .
−αigk · · · αigk

...
. . .

...
αjgk · · · −αjgk

. . .


(30)

The element at position (i, i) is −αigk, the element at position (j, j) is −αjgk, the element at position (i, j)

is αigk, the element at position (j, i) is αjgk, and the matrix is zero everywhere else, where k represents the
unique index of the connection. As a concrete example to better illustrate the decomposition, we show how
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AbranchNS can be decomposed into L and Ci,j where the number of dendrites is 2:

ANSbranch =

 −1− α1g1 0 α1g1

0 −γ2 − α2g2 α2g2

g1 g2 −γS − g1 − g2

 = L+ CS,1 + CS,2 where:

L =

 −1 0 0

0 −γ2 0

0 0 −γS

 , CS,1 =

 −α1g1 0 α1g1

0 0 0

1 · g1 0 −1 · g1

 , CS,2 =

 0 0 0

0 −α2g2 α2g2

0 1 · g2 −1 · g2

 (31)

Notice that for physically-realistic values for the parameters, the absolute value of the diagonal element
in each row of Ci,j is equal to the absolute value of the non-diagonal elements. Additionally, since LNS
has no zero elements in the diagonal, then ANS must be strictly diagonally dominant. Therefore, ANS is
nonsingular, diagonalizable, and the real parts of the eigenvalues are negative [5]. The argument can also
be extended to the spiking solution, as AS is also strictly diagonally-dominant. However, it is possible to
pick values of parameters to be zero such that ANS or AS is not diagonalizable, but in those cases, the
dimensionality of the system can be reduced so that the matrix is diagonalizable, such as removing an
irrelevant or isolated compartment from the system.

The return map

Using the two maps we defined above, we can define a new map Φ which takes the initial state of the neuron,
Vj = V0 (where VS(0) = VR), to the state of the neuron after the next spike, Vj+1.

Φ = ΦS ◦ ΦNS : Vj → Vj+1 (32)

This map uses the non-spiking map ΦNS to compute the state of the neuron at the onset of the spike t∗. If
the neuron does not spike, then Φ returns Vinf without computing ΦS . Otherwise, we can then apply ΦS to
the resulting dendritic membrane potential and obtain the state of the neuron at the end of the spike. Note
that we discard the somatic membrane potential in our overall map since it will always be VR at the end of
every spike. Thus, even though the overall neuron is a (n+ 1)-dimensional system, we reduce the dynamics
to an n-dimensional return map.

We can use the return map to determine the critical voltage V ∗, where an initial voltage greater than this
value will cause the neuron to spike indefinitely. Any initial voltage smaller than V ∗ will be quiescent,
eventually reaching Vinf after ceasing spiking. In the multi-compartment setting, V ∗ is an n−2 dimensional
curve in the n−1 dimensional space as defined by the map. This curve can be computed as the set of points
V ∗ that satisfies the condition:  dVS

dt

∣∣
t=t∗;VD(0)∈V ∗ = 0

VS(t∗;V ∗) = Vth
(33)

Where t∗ is the time at which the somatic potential reaches threshold. For example, for the branch model,
this equation can be written:

−γS(V branchS (V0)− βS) + IS + g1(V branchD1
(V0)− V branchS (V0)) = 0 (34)

Note that V branchS (V0) and V branch1 (V0) are functions of V0. Thus, V ∗ is computed by finding the values of
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V0 such that the above condition is met, which can be done simultaneously with solving for t∗ in equation
23. In our experiments, we compute this value numerically by searching for the point at which t∗ changes
from a finite value to infinity, which indicates that it has touched the quiescent region in our return map.

Spike shape

We use two spike shapes in our simulations: square and exponential spike shapes. The square spike is defined
as:

h(t) = H (35)

Where H is the maximal membrane potential of the spike.

Figure 1: Voltage trace of the square spike
shape. The blue curve is the somatic mem-
brane potential, the red curve is that of the
first and only dendrite, and the circles indicate
our predicted voltages using the maps that we
define in the section on non-spiking and spik-
ing solutions. The parameters used to gener-
ate this figure were: α = 1, g = 1, βS = 1,
γS = 10, VR = −2, Ta = 0.2, I1 = 0, and
IS = −0.6. The maximal potential of the
spike was 15.

The construction of the exponential spike shape is more involved. We parameterize the shape of the spike
as a sum of two exponentials:

hp(t) = − pb
pa − pd

exp{pdt}+

(
H +

pb
pa − pd

)
exp{pat} (36)

Where pa = 29.5110 · p − 26.7385, pb = −400 · exp{−7.377 · p} − 0.0001, pd is solved numerically such that
h(0) = H and h(Ta) = VR. The constants used in the expressions for pa and pb were set such that the
resulting spike shape exhibited afterhyperpolarization and a diverse range of waveforms. The shape of the
spike can be controlled with the parameter p, where p = 0 has a much thinner spike, and a large subsequent
region of afterhyperpolarization. For p ≈ 0.6, the spike is shaped similarly to a line, connecting h(0) = H

to h(Ta) = VR. Finally, when p = 1, the spike shape becomes much larger, curving upward and then falling
sharply back down to h(Ta) = VR. The voltage traces in Figure 2 show the effect of the spike shape parameter
on the spike. This parameterization allows us to continuously explore the effect of a changing spike shape
with and without afterhyperpolarization, including a spike shape very similar to the square spike.
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a b c

Figure 2: Somatic voltage traces with exponential spike shape parameters p = 0.05 for a, p = 0.44972 for b, and
p = 0.90366 for c. Note that the firing frequency increases with p, which we explore in later sections. The other
parameters used to generate these figures were: α = 1, g = 5, βS = 1, γS = 10, VR = −2, Ta = 0.2, I1 = 0,
and IS = 1. The maximal potential of the spike was 15.

Results

Return map analysis

The return map enables us to explore the firing dynamics of the model. We characterize the firing state of the
neuron into three classes: the quiescent, monostable, and bistable firing regimes. In the quiescent state, no
matter how high the initial membrane potentials are, the neuron will eventually stop firing. Similarly, in the
monostable state, no matter what the initial conditions of the neuron, the neuron will not stop spiking. There
is a threshold current for which any injected current higher than this value will always put the neuron in the
monostable state. This corresponds to the threshold at which the somatic element of Vinf = −(ANS)−1b

exceeds the threshold potential Vth:

Vinf,S = −
[
(ANS)−1 · b

]
n+1

= −
[
(ANS)−1

]
n+1,n+1

bn+1(IS)−
n∑
i=1

[
(ANS)−1

]
n+1,i

bi = Vth (37)

Here,
[
(ANS)−1

]
n+1,i

is the element of the matrix (ANS)−1 in the row n + 1 and column i, bi is the i-th
element of the vector b. Note that only the term bn+1(IS) is a function of the injected somatic current IS
and is the only term that depends on IS in our model. Thus, we can compute the inverse of the function
bn+1(IS), call it b−1

n+1(·), and solve for the threshold injected somatic current above which the neuron is
monostable:

IS,th = b−1
n+1

(
Vth +

∑n
i=1

[
(ANS)−1

]
n+1,i

bi

[ANS ]n+1,n+1

)
(38)

As an example, we compute the threshold somatic current for the “branch” model with two dendrites:

IS,th =
VthB

(α1g1 + 1)(γ2 + α2g2)
− I1g1

α1g1 + 1
− g2(I2 + β2γ2)

γ2 + α2g2
− βSγS (39)

Where B = g1γ2 + g2γ2 + γ2γS + α2g1g2 + α2g2γS + α1g1g2γ2 + α1g1γ2γS + α1α2g1g2γS .
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Notice that this threshold current does not depend on the spike shape, which implies that the spike shape
does not affect whether the neuron is in the monostable regime.

Figure 3: The voltage trace of the stable limit cy-
cle in a three-compartment branch model where
α1 = 1, α2 = 1, g1 = g2 = 2, γ2 = γS = 1,
β2 = βS = 0, I1 = I2 = 0, IS = −5.6,
VR = −2, Ta = 0.2, and a square spike shape
with maximal potential 15. The blue curve is the
voltage of the soma, red is the voltage of the first
dendrite, and green is the voltage of the second
dendrite. The curves were generated using a sim-
ple Euler loop simulating the system. The circles
indicate the values of the solution as predicted
by the non-spiking and spiking portions of return
map.

The return map enables the easy characterization of
the excitability of the neuron. Bistability in the two-
compartment model resulted from the ping-pong effect,
where the dendritic compartments are depolarized suf-
ficiently from the previous spike that the resulting flow
of current back into the soma would elicit periodic spik-
ing, despite the cell not being in the monostable regime
[23]. The voltage trace in Figure 3 is of a neuron in the
bistable regime.

The vector plot in Figure 4 visualizes the magnitude
and direction of the next iteration of the return map
for each initial setting of dendritic voltages. Note that
the initial somatic voltage is fixed to VR = −2. The red
curve is the V1-nullcline and the blue curve is the V2-
nullcline, which can be computed by solving the equa-
tions dV1

dt = 0 for VD2 and dV2

dt = 0 for VD1 , respectively.
The dotted orange line is V ∗ as described by Equations
36 and 37.

Three plots are shown with different values of injected
somatic current. From these plots, it is evident that
there exists a range of values for the injected somatic
current for which the “branch” model exhibits bistable
behavior. This corresponds to the plot where two sta-
ble fixed points at the intersections of the nullclines are
visible, each corresponding to the quiescent state and
to the stable limit cycle in which the neuron repeat-
edly and regularly spikes. The position of the fixed
point corresponding to the quiescent state is identical
to Vinf . Any value of the injected current greater than
this range will exhibit monostable firing. Any value
lower than this range will stop firing and be quiescent.
In fact, for both models, there are parameter ranges
where the neuron can be quiescent, bistable, or monos-
table.
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Figure 4: A vector plot representation of the re-
turn map where the arrows indicate the direction
and relative magnitude of the next iteration of the
map. Here the number of dendrites is n = 2, and
the other parameters: α1 = α2 = 1, g1 = g2 = 1,
β2 = βS = 0, γ2 = γS = 1, I1 = I2 = 0, IS = 0.5
(left), IS = 1.9 (bottom-left), and IS = 2.5
(bottom-right). As the current is increased, we
see the neuron switches from the quiescent state
(left) into a bistable regime (bottom-left), and fi-
nally, monostability (bottom-right). We are using
the “branch” model with the square spike shape
(H = 15). The red curve is the V1-nullcline and
the blue curve is the V2-nullcline. The dotted or-
ange curve separates the spiking region from the
quiescent region.

Effect of spike shape on firing dynamics

Using our framework, we can determine whether a given parameter set will result in quiescent, monostable,
or bistable behavior in the three-compartment neuron (either with a chain or branch topology). We explore
the effect of varying the spike shape parameter p for the exponential spike on the firing dynamics. Figure 5a
is a bifurcation diagram for the applied somatic current IS versus the spike shape parameter p. We notice
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that when the shape of the spike is too narrow, it becomes more difficult to find parameter ranges with
bistability in the system. Only when the spike shape is sufficiently large so that a large amount of current
can flow into the dendrites to facilitate the ping-pong effect does bistability appear. Note the effect on the
frequency of the stable limit cycle: as the spike shape parameter increases, the spiking frequency increases
monotonically. In our model, we observe that afterhyperpolarization during the spike limits the current that
can flow from the soma to the dendrites. This will limit the current flowing back from the dendrites into the
soma, which in turn inhibits bistability. This is precisely the reason why for low values of the spike shape
parameter p in Figure 5a, there is no bistability. Increasing the spike height results in an increase in current
flowing into the dendrites, directly increasing the ping-pong effect. Since bistability only occurs prevalently
for wider spikes, we will restrict our focus to the square spike.

a b

Figure 5: a: A bifurcation diagram exploring the effect of the spike shape parameter on the stability of the
two-compartment system. b: A plot of spike frequency as a function of the spike shape parameter where the
injected somatic current IS is fixed to 1. This is the same value that we use in our later analysis of the effect
of spike shape on synchronization properties of the neuron. The parameters used to generate this figure were:
α1 = α2 = 1, g1 = g2 = 1, β2 = βS = 0, γ2 = γS = 1, I1 = I2 = 0, and IS = 1.9. The square spike shape was
used with maximal potential H = 15.
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a b c

Figure 6: Bifurcation diagrams showing differences in stability with varying the spike duration Ta between the
two-compartment model (a), the three-compartment branch model (b), and the three-compartment chain model
(c). The parameters used to produce these figures are α1 = α2 = 1, g1 = g2 = 1, γ2 = γS = 1, β2 = βS = 0,
I1 = I2 = 0, VR = −2, and a square spike shape (with maximal potential H = 15).

Figure 6 displays a bifurcation diagrams of the applied somatic current IS versus the spike duration Ta.
We see in all of the dendrite topologies we tested, if the spike duration is too small, there is no range of
injected somatic currents for which the neurons are bistable. Comparing Figure 6b to 6a, we see that the
addition of the second dendrite in the “branch” configuration dramatically increases the width of the bistable
region, and enables bistability for smaller values of the spike duration Ta. This is due to the fact current can
flow between the soma and two dendritic compartments. The depolarization of two dendritic compartments
provide an additive effect to the current flowing back into the soma. Hence, when the soma stops spiking,
current from the dendrites flow back into the soma. When the second dendrite is attached to the soma,
we see a double ping-pong effect, where depolarizing current can now flow from two sources into the soma.
However, we can see in Figure 6c that if the second dendrite is connected to the first dendrite, as in the
“chain” topology, the second dendrite behaves as a sink, drawing current away from the first dendrite, and
ultimately, from the soma. This reduces the ping-pong effect, and therefore, the width of the bistable region.

Effect of biophysical parameters on firing dynamics

Figure 7 presents three two-parameter bifurcation diagrams of the injected somatic current IS versus α1,
the ratio of the somatic surface area to that of the first dendrite. We notice in Figure 7a that when we
vary α in the two-compartment model, there is a region of bistability which appears and quickly increases
in size as α1 is raised from 0. The width of this bistable region peaks at around α1 ≈ 2, and then contracts
in size, disappearing at around α1 ≈ 8. In Figure 7b, when another compartment was added, connected to
the soma (as in the branch model), the width of the region of bistability increases dramatically. Taking the
limit as α1 → ∞, we notice that the neuron approaches the two-compartment model in Figure 7a where
the size parameter of the only dendrite is set to 1. In Figure 7c, we notice that if the extra compartment
is instead attached to the first dendrite, the region of bistability is much smaller. Contrasting with the
two-compartment case, note that the width of the bistable region does not go to zero as α1 becomes large.
In fact, as α1 increases, the potential of the first dendrite V1 approaches g1VS+g2V2

g1+g2
, which is the weighted

average of VS and V2, resulting in a coupling between the second dendrite and the soma that is distinct
from that in the two-compartment and chain model scenarios. The equivalent two-compartment model has

15



a new coupling conductance g = g1g2
g1+g2

= 1
2 , and other parameters: α = 1, γD = 1, γS = 10, βD = βS = 0,

ID = 0, and the square spike shape has height H = 10. This equivalent parameter setting is not depicted
in any of our figures. Also note that the value of α1 that maximizes the region of bistability is near not 1,
which is a heterogeneous setting for the size parameters of the two dendrites α1 and α2. Thus, for many
parameter combinations, heterogeneity in the properties of the dendrites can enhance the bistability of the
system, even if all of the other parameters are homogeneous. Similarly, there are parameter ranges where
the homogeneous settings of the parameters α1 and α2 maximize bistability.

a b c

Figure 7: Bifurcation diagrams showing differences in stability with varying α1, the ratio of the somatic area to
the surface area of the first compartment, between the two-compartment model, the three-compartment branch
model, and the three-compartment chain model, respectively, from left to right. The solid line is IS,th, the
threshold injected current such that any higher current will result in the neuron always spiking periodically, as
described by Equation 34. The dash-dotted line minimum somatic injected current needed to sustain oscillations,
and any smaller value will result in the neuron becoming quiescent. The parameters used to produce these figures
are α2 = 1, g1 = g2 = 1, γ2 = 1, γS = 10, β2 = βS = 0, I1 = I2 = 0, VR = −2, Ta = 0.2, and a square spike
shape (with maximal potential H = 10).

a b c

Figure 8: Bifurcation diagrams showing differences in stability with varying g1, the normalized conductance
parameter of the coupling between the soma and first compartment, between the two-compartment model, the
three-compartment branch model, and the three-compartment chain model, respectively, from left to right. The
parameters used to produce these figures are α1 = α2 = 1, g2 = 1, γ2 = 1, γS = 2, β2 = βS = 0, I1 = I2 = 0,
VR = −2, Ta = 0.2, and a square spike shape (with maximal potential H = 5).
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Figure 8 provides three two-parameter bifurcation diagrams, but with respect to the gap junction conductance
parameter of the electrical coupling between the soma and the first dendrite g1. As with varying the ratio of
the somatic surface area to that of the first compartment α1, we see similar differences in behavior between
the three models when we vary the coupling conductance g1. In Figure 8a, it is evident that increasing
g1 directly increases the ping-pong effect, as more current flows between the dendrite and the soma in an
additive effect, thereby increasing the width of the bistable region. Note in Figure 8b that the size of the
bistable region increases when the second dendritic compartment is connected to the soma as in the branch
model. The additional source of depolarizing current enhances the ping-pong effect, seemingly translating
the onset of bistability to the left. The width of the bistable region decreases when the compartment is
connected to the first dendrite as in the chain model as is evident in Figure 8c. The current that would
normally flow from the first dendrite to the soma is now split between the soma and the second dendrite.
Acting as a sink, the additional compartment reduces the ping-pong effect, which decreases with width of
the bistable region.

Figure 9 further underscores the differences between the three models when the normalized leakage con-
ductance parameter γS is varied, and α1 and g1 are fixed to 1. Recall that γS is a measure of how slowly
the somatic potential changes with respect to the first dendrite. Higher values of γS enables additional
depolarizing current to flow into the soma, enhancing the ping-pong effect. Similar to the earlier cases, the
size of the bistable region increases when the second dendritic compartment is connected to the soma as in
the branch model, and decreases when the compartment is connected to the first dendrite as in the chain
model. For the branch model, the bistable region exists even as γS approaches zero, in contrast to both the
two-compartment model and the three-compartment chain model.

a b c

Figure 9: Bifurcation diagrams showing differences in stability with varying γ1, the normalized leakage conduc-
tance, between the two-compartment model, the three-compartment branch model, and the three-compartment
chain model, respectively, from left to right. The parameters used to produce these figures are α1 = α2 = 1,
g1 = g2 = 1, γ2 = 1, β2 = βS = 0, I1 = I2 = 0, VR = −2, Ta = 0.2, and a square spike shape (with maximal
potential H = 25).

In Figure 10, we experiment with varying the parameter coupling conductance parameter g1. In the two-
compartment model, the region of bistability grows monotonically with increasing g1, as is evident in Figure
8, and this behavior was easy to reproduce with the three-compartment model. However, when the value
of the ratio of the surface area of the soma to that of the first dendrite α1 was set to 5.5, and the values of
the normalized leakage conductances γ1 and γS are set to 8, we found that even in the two-compartment
model, the stability profile of the neuron was changed so that the width of the bistable region no longer
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monotonically increases in size. Instead, there is an optimal parameter setting of g1 that would maximize
the size of the bistable region. In the three compartment model, the width of the bistable region further
increases and does not go to zero as g1 → ∞. The addition of a dendrite, depending on the topology of a
neuron, can add greater degrees of freedom to the leaky integrate and fire neuron, allowing the model to
exhibit a greater variety of firing dynamics profiles.

Figure 10: Bifurcation diagrams with varying g1, the normalized conductance of the coupling between the soma
and first dendrite, but with the parameter set: α1 = 5.5, α2 = 1, g1 = g2 = 1, γ2 = γS = 8, β1 = β2 = βS = 0,
I1 = I2 = 0, VR = −2, Ta = 0.2, and a square spike shape with maximal potential 15. The left image, however,
has the second dendrite removed, whereas the right image has it attached to the soma.

Synchronization properties of LIF neurons with dendritic structure

In this section, we will explore the effect of varying the spike shape on the synchronization dynamics of
coupled LIF neurons, where each neuron, when isolated, is in the monostable firing regime. The approach
we undertake is valid under any type of coupling between the neurons, as long as the coupling is weak. As
an example, we assume that two multi-compartment LIF neurons are coupled via an electrical gap junction
at their dendrites, which is ubiquitous among inhibitory interneurons in the neocortex [1]. Thus, our system
of linear differential equations is modified with the addition of a term αiggap(V

(2)
i − V

(1)
i ) that captures

the flow of current across the gap junction connecting the two neurons. We let k be the index of the only
dendrite at which the electrical coupling between the two neurons exists.

dV
(1)
k

dt
=

n+1∑
j=1

ANSk,j V
(1)
j + bNSk − αkggap(V (2)

k − V (1)
k ) if the neuron is not spiking (40)

dV
(1)
k

dt
=

n∑
j=1

ASk,jV
(1)
j + bSk (t)− αkggap(V (2)

k − V (1)
k ) if the neuron is spiking (41)
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The system is defined similarly for the other neuron V (2)
k , and the equations for the other compartments are

as in our original model. Let ε be the coupling strength coefficient αiggap which we can write in dimensional
terms as ε = ḡgap/(AigLD1). Note that perturbations as a result of this coupling will be weak if ε is small.
We define the non-dimensional period of the limit cycle of each neuron when isolated is T .

Theory of weakly-coupled oscillators

The theory of weakly-coupled oscillators is frequently used to explore the dynamics of oscillating systems
of interconnected neurons [24, 21, 8]. In a network of firing neurons, each exhibiting a T -periodic limit
cycle when isolated, the state of each neuron can be captured by its phase in its T -periodic limit cycle:
θj(t) = t + φj(t) ∈ [0, 1) where φj(t) is the relative phase of the jth neuron. The reduces the complexity
of analysis, as the behavior of each high-dimensional oscillator can be captured by a single-dimensional
representation. A system of two coupled neurons can be further simplified by studying the evolution of the
phase difference between the two neurons φ = θk − θj = φk − φj .

The evolution of the jth neuronal oscillator’s relative phase is governed by the phase equation:

dφj
dt

= ε
1

T

ˆ T

0

ZD(t+ Tφj)Icoupled(φk, φj)dt (42)

Phase model in the electrically-coupled LIF model

We approximate Icoupled(φk, φj) as the difference in voltage between the two compartments in addition to
a phase shift: VLC,D(s + T (φk − φj)) − VLC,D(s). This is valid due to our assumption that the coupling
between the neurons is weak. Therefore, the membrane potential of the compartments of each neuron will
be very strongly attracted to the limit cycle. It is tractable to compute ZD(·) and VD(·) since we have the
analytic solution for our system.

dφj
dt

= ε
1

T

ˆ T

0

ZD(t+ Tφj) (VLC,D(t+ Tφk)− VLC,D(t+ Tφj)) dt

= ε
1

T

ˆ T

0

ZD(s) (VLC,D(s+ T (φk − φj))− VLC,D(s)) ds where ε is the coupling strength.

= H(T (φk − φj))

(43)

Where H(T (φk − φj)) is called the H-function or interaction function and describes the modulation of the
jth oscillator’s instantaneous frequency resulting from the coupling current, which in our case is the passive
current flow between dendritic compartments VLC,D(T (t+φk))−VLC,D(T (t+φj)). The infinitesimal phase
response curve, or iPRC, ZD(s) describes the change in the phase of an oscillator in response to an δ-function
stimulus at the point s in the limit cycle of the oscillator. The iPRC can be computed by perturbing the
isolated neuron with a small current pulse at different points along the limit cycle, and measuring the
resulting change in phase. An alternative approach to compute the iPRC is to find the solution to the
adjoint problem of the oscillating system linearized around its limit cycle [24].

Deriving the iPRC

We will now derive the iPRC for the multi-compartment LIF model by solving the corresponding adjoint
problem. Recall that the membrane potentials of the compartments of our neuron model are characterized
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by the piecewise differential system: dV
dt = ANSV + bNS when not spiking, and dV

dt = ASV + bS(t) once
VS reaches threshold. These can be expressed as dV

dt = F(V) where F is a piecewise vector-valued function.
Suppose that a solution exists with a stable limit cycle. We derive the iPRC by solving for Z(t) in the adjoint
equation [24]:

dZ

dt
= −D[F(VLC(t))]>Z (44)

Where D is the Jacobian matrix and VLC(t) is a vector of the membrane potentials at each compartment,
representing the solution at the stable limit cycle evaluated at t. This iPRC specifies how the system will
react to an infinitesimal pulse of current into any of the compartments (each compartment has an iPRC,
corresponding to the response of the oscillator to a current impulse within that compartment). Notice
that the Jacobian is taken with respect to the membrane potentials, and so D[F(VLC(t))]> is equivalent
to A>NS when the neuron is not spiking. When spiking, however, D[F(VLC(t))]> is the matrix where the
top-left (n − 1) × (n − 1) block is A>S and all other elements are zero where n is the total number of
compartments. Thus, the iPRC for all compartments is simply the solution to dZ

dt = −A>NSZ when not
spiking, and for the dendritic compartments only, the iPRC is the solution to dZ

dt = −A>SZ (the somatic
iPRC is the solution to dZS

dt = 0). Since we can diagonalize ANS = SNSΛNSS
−1
NS , then it must be the case

that −A>NS = (S>NS)−1(−ΛNS)S>NS . So when the neuron is not spiking, we can write the general solution
to Z(t):

Z(t) = (S>NS)−1e−ΛNStS>NS · Z0 (45)

When spiking however, we know that AS = SSΛSS
−1
S is similarly diagonalizable, and so:

Z(t) = (S>S )−1e−ΛStS>S · Z(t∗) (46)

Where t ∈ [t∗, t∗ + Ta), t∗ is the time at which VS hits the threshold voltage. Note that the somatic iPRC
ZS(t) = 0 is constant during the spiking phase since no amount of current will change the shape of the spike.

To determine the values of the integration constants Z0, Z(t∗), and ZS,0, we apply the normalization condi-
tion: Z(t) · F(VLC(t)) = 1 for all t. In the non-spiking condition, we have Z(t) · F(Vinf + SNSe

ΛNStS−1
NS ·

(V0 −Vinf )). Simplifying:

Z(t)>F(VLC(t)) = Z(t)>(SNSΛNSS
−1
NS(−SNSΛ−1

NSS
−1
NSb + SNSe

ΛNStS−1
NS(V0 + SNSΛ−1

NSS
−1
NSb)) + b)

= Z0 · (ANSV0 + b) = 1

(47)
This indicates that the fact that the normalization condition holds for values of t at which the neuron is
not spiking does not provide any additional constrains/information than when the condition is true only at
t = 0. However, we can enforce the T -periodicity of the system with the following condition: If we know
the limit cycle VLC(t), then we know the time at which the spike begins and the interspike interval of the
neuron. Thus, we can simply plug these into the matrix solutions we derived above. However, there is the
problem that the spiking portion of the iPRC has one fewer dimension than the non-spiking portion. If
t∗ is the time of spike onset, and the neuron as n dendrites, then Z(t∗) = (S>NS)−1e−ΛNSt

∗
S>NS · Z0 is an

(n+ 1)-dimensional vector representing the value of the iPRC at time t∗, as computed using the non-spiking
iPRC solution. Notice that the somatic iPRC is zero when the neuron is firing, and so the iPRC at t > t∗ is
the n-dimensional vector Z(t) = (S>S )−1e−ΛS(t−tA)S>S · (Z(t∗))1:n where (Z(t∗))1:n is the first n elements of
the iPRC evaluated at t∗. Evaluating Z(t) at the end of the spike t∗ + Ta = T , we can impose T -periodicity
by setting Z(0) = Z(t∗ + Ta), and utilizing the constraint that the dendritic iPRCs are continuous. This
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gives us an n-dimensional linear system of equations in Z0, which has n+ 1 unknowns:

(Z0)1:n = (S>S )−1e−ΛS(t−tA)S>S ·
(

(S>NS)−1e−ΛNSt
∗
S>NS · Z0

)
1:n

=: f(Z0) (48)

Given the limit cycle VLC(t) and the value of the iPRC at t = 0, including the value of the somatic iPRC,
we can compute f(Z0) to find the unique value of the iPRC at t = t∗+Ta = T . Similarly, given the value of
the iPRC at time t = T , we can compute the unique Z0 such that Z(T ) = [f(Z0), ZS,0], and so the space of
solutions Z0 has dimension n. Thus, by adding the normalization condition Z0 · (ANSx0 + b) = 1, we have
a total of n+ 1 equations with n+ 1 unknowns, enabling us to find the unique solution for Z0.

Notice that the iPRC depends heavily on the parameters governing the ANS and AS matrices. There is an
implicit dependence on both bNS or bS(t), which specify the shape of the spike, for example, since both affect
the stable limit cycle VLC(t), which will influence Z0 via the normalization condition. But only the ANS and
AS matrices can change the overall shape of the iPRC. In addition, given the properties of ANS and AS , the
iPRC system has a single unstable fixed point at the origin, as all of the eigenvalues have positive real parts.
We emphasize that this approach is sufficiently general to compute the iPRC for any multi-compartment
LIF neuron. We will showcase an example of how this can be done for the two-compartment model.

Example: Two-compartment model

We present an example of this calculation for the two-compartment model. For the two-compartment model,
we have the following linear differential equation for Z(t):

dZ

dt
=

[
αg + 1 −g
−αg g + τD

τS

][
ZD(t)

ZS(t)

]
= −A>NS · Z(t) (49)

We then diagonalize −A> = S>(−Λ)(S>)−1 and so the solution is as follows:

Z(t) = (S>NS)−1e−ΛNStS>NS · Z0

λD = − 1
2 (1 + g + αg + τD

τS
+R) λS = − 1

2 (1 + g + αg + τD
τS
−R)

S =

[
1
g cD

1
g cS

1 1

]
S−1 =

[
− g
R

1
RcS

g
R − 1

RcD

] (50)

Multiplying these terms, we obtain:

Z(t) =
1

R

[
cSe
−λSt − cDe−λDt cD(e−λDt − e−λSt)

−cS(e−λDt − e−λSt) cSe
−λDt − cDe−λSt

]
· Z0 (51)

Where R =

√
α2g2 + 2αg2 − 2αg τDτS + 2αg + g2 + 2g τDτS − 2g +

τ2
D

τ2
S
− 2 τDτS + 1. For readability, let cD =

λD+g+ τD
τS

and cS = λS +g+ τD
τS

. And so if we plug these into the analytic solution, we obtain the following
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two equations for the non-spiking portion of the iPRC:

ZD(t) = − 1

R
e−λDt(cDZD(0) + gZS(0)) +

1

R
e−λSt(cSZD(0) + gZS(0))

ZS(t) =
1

R
cSe
−λDt(

1

g
cDZD(0) + ZS(0))− 1

R
cDe

−λSt(
1

g
cSZD(0) + ZS(0))

(52)

Figure 11: These are plots of the limit cycle (top row) and infinitesimal phase response curves (bottom row) of
the soma, first dendrite, and third dendrites, respectively from left to right, of a model neuron where the dendrites
are arranged in a linear chain. The blue dotted curve is the simulated iPRC, where a square pulse with magnitude
0.1 and duration 0.001 was delivered to the respective compartment at each time during the limit cycle, and the
subsequent deviation from the limit cycle was then measured. The red curve is our analytic solution. Notice the
difference in the scaling of the y-axis. The first portion of the curve corresponds to the non-spiking region. The
last portion (Ta = 0.2) corresponds to the spiking region. Each dendrite in the chain acted as a “filter,” smoothing
and decreasing the magnitude of the iPRC with each compartment. The parameters used for to generate these
figures were: αi = 1, βi = 0, gi = 1, and γi = 1 for all compartments i, Ii = 0 for all dendrites, VR = −2,
Ta = 0.2, IS = 1.8, and a square spike shape was used with maximal potential 15.

The spiking portion is simpler since ZS(t) = 0, and so our system is simply dZD

dt = (αg + 1) · ZD, and
so ZD(t) = e(αg+1)(t−T+Ta)ZD(T − Ta) is the iPRC of the spiking portion, where T − Ta is the time of
spike onset. To compute the initial conditions, assume we start at time 0 at the onset of the non-spiking
region with ZD(0) and ZS(0) (we note that neither of these are zero). Then the neuron evolves until
the somatic potential reaches threshold, and the neuron begins to spike at time T − Ta (the difference
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between the interspike duration and the spike duration). We note that ZD(t) must be continuous, and so
ZD(T − Ta) = 1

RcDe
−λD(T−Ta)(ZD(0)−ZS(0))− 1

Re
−λS(T−Ta)(cSZD(0) + cDZS(0)). During spiking, ZS(t)

is zero, and so at time T − Ta and T , there are discontinuities where ZS(t) jumps down to zero and then
back up to ZS(0). To enforce T -periodicity, we substitute our solution into ZD(T ) = ZD(0) and we obtain
the following relation:

ZD(0) =
1

R
cSe

(αg+1)Tae−λD(T−Ta)(ZS(0)− ZD(0)) +
1

R
e(αg+1)Tae−λS(T−Ta)(cSZD(0)− cDZS(0)) (53)

Notice that this relation is linear in ZD(0) and ZS(0), and so we can apply the normalization condition at
time 0 to obtain the another linear relation:

1 = ((−αg + 1)VD(0) + αgVS(0) + ID)ZD(0) + (gVD(0) + (−g − γS)VS(0) + γSβS + IS)ZS(0) (54)

Note that VD and VS are the voltages of each of the compartments at the beginning of the non-spiking
portion of the limit cycle. This gives us a system of two linear equations which we can solve to find the
initial values of the iPRC.

Back to the phase model

Let φ = φk − φj be the phase difference between two multi-compartment LIF oscillators electrically-coupled
at their dendrites. The G-function is the description of the evolution of the phase difference:

dφ

dt
= H(−φ)−H(φ) = G(φ) (55)

Where the H-function is defined in Equation 42. The zeros of the G-function correspond to phase-locked
states in this system of coupled neurons. The first derivative test can be used to determine the stability of
these phase-locked states [24].

Including heterogeneity in the phase model

The above derivation made the assumption that the coupled neurons were identical. We can incorporate
heterogeneity between the neurons by modeling its effect as a difference in the intrinsic firing frequency
between the two somata. This results in the following change to the phase difference equation:

dφ

dt
= ∆ω +G(φ) (56)

Where ∆ω is the difference in intrinsic firing frequency between the coupled neurons. Note that the phase-
locked states are now given by the intersection of the G-function with the horizontal line −∆ω. Let ∆ω∗

be the value of ∆ω such that any greater difference in firing frequency will result in the loss of all phase-
locked states. Therefore, ∆ω∗ is the maximum extent to which a system of two weakly-coupled oscillators
can tolerate a difference in firing frequency before losing synchrony [22]. We use this are our definition of
robustness, as phase-locked systems with larger values of ∆ω∗ are more robust to heterogeneity.

robustness = max
φ

∣∣∣∣ 1

τD
G(φ)

∣∣∣∣ (57)
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Since frequency here is defined in terms of dimensional time, we must apply a correction to our computation
of the H-function using the transformation t = t̄/τD. Similarly, we need to ensure that the iPRC is in terms
of frequency, and so we divide by T :

dφj
dt̄

= ε
1

τDT

ˆ T

0

ZD(s)

T
(VD(s+ T (φk − φj))− VD(s)) ds (58)

To select the value of the coupling coefficient ε, recall that ε = ḡgap/(AigLD1
) = ḡgap/(4πR

2
i gLD1

) where Ri is
the radius of compartment i. We select the biophysically-realistic value of ε = 0.1 to use in our experiments.

Results

Effect of spike shape on iPRC

The effect of spike shape on the behavior of the system consisting of two weakly coupled two-compartment
neurons is significant. Figure 12 shows that the shape of the iPRC very clearly changes with the changing
spike shape. These iPRC curves correspond to the voltage traces of the system in Figure 2. As the spike
shape becomes more and more linear, with the afterhyperpolarization being reduced, the magnitude of the
iPRC increases. Then, a bifurcation occurs, and we can see by p = 0.9, the magnitude of the iPRC is greatly
reduced.

Figure 12: Dendritic iPRC plots with spike shape parameters p = 0.04, p = 0.44972, and p = 0.90366,
respectively, from left to right. The blue dotted curve is the simulated iPRC, where a square pulse with magnitude
0.1 and duration 0.001 was delivered to the respective compartment at each time during the limit cycle, and the
subsequent deviation from the limit cycle was then measured. The red curve is our analytic solution. Notice
the difference in the scaling of the y-axis. The parameters used to generate this figure were: α1 = α2 = 1,
g1 = g2 = 1, β2 = βS = 0, γ2 = γS = 1, I1 = I2 = 0, and IS = 1.9.

Effect of spike shape on iPRC

A more comprehensive graphical representation of the bifurcations that occur is visible in Figure 13. There
are two bifurcations in this system: one at p ≈ 0.2 and the second at p ≈ 0.5. When the spike shape
parameter is small (p < 0.2), there is significant afterhyperpolarization in the system, and we notice that the
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Figure 13: Top: Robustness plot, where the blue
curve is the maximum absolute value of the G-
function, and the red dotted curves indicate the
magnitudes of local maxima and minima.
Bottom: Bifurcation diagram of the synchrony
properties of the coupled oscillator system as
computed from the zeros of the G-function. The
solid blue curves indicate stable fixed points,
whereas the red dotted lines indicate unstable
points. The parameters used to generate this
figure were: α1 = α2 = 1, g1 = g2 = 1,
β2 = βS = 0, γ2 = γS = 1, I1 = I2 = 0,
and IS = 1.9.

system of coupled neurons are actually bistable. Depend-
ing on the initial conditions of the system, the neurons
can either evolve to be synchronously or asynchronously
firing. The robustness of this behavior is actually quite
high, ranging from 2% to 4%. After this first bifurcation,
the asynchronous behavior is no longer stable, and only
synchrony exists. The robustness of this synchronous be-
havior is very high, reaching more than 10% just before
the second bifurcation, where it drops off sharply to about
3%.

At this second bifurcation, we see that perfectly syn-
chronous behavior is no longer stable. The fixed point
splits and the two points move continuously toward each
other (toward asynchrony). This is another region of
bistability. This implies that there are settings for pa-
rameters for the two-compartment model such that the
stable point can be arbitrarily positioned between syn-
chrony and asynchrony. In our other simulations, we were
able to “stretch” this bifurcation so that it would not be as
sensitive to any of the parameters. After this bifurcation,
the system becomes firmly asynchronous. However, the
robustness of this asynchrony becomes much lesser, de-
creasing toward 0% as the spike shape approaches p = 1.

In our simulations, we observe that the robustness is very
closely related to how close the system is to “not firing,”
in that a system which will be quiescent with a decrease
in injected current is more robust in its synchrony char-
acteristics than a system that will not become quiescent
with the same decrease in current. For example, in this
experiment, we can see in the corresponding bifurcation
diagram in Figure 5 that, along the line IS = 1, the sys-
tem is very close to the “no firing” region up until p ≈ 0.55.
After this point, the system becomes increasingly distant
from the quiescent state (it can tolerate a great loss of
injected current, as the stable limit cycle will still exist,
even in the bistable regime).

Conclusion

We presented the multi-compartment leaky integrate-
and-fire model, enabling the modeling of arbitrarily large
trees of dendritic compartments. We showed when the pa-
rameters gi, αi, γi are set to positive, physically-realistic
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values, then the matrix representing the differential system of equations can be diagonalized, and all of the
eigenvalues have negative real parts, implying that the system will always have a stable fixed point Vinf .
We provided a parameterization of the spike shape as a sum of two exponentials, which can exhibit after-
hyperpolarization. By characterizing the excitability of f-I curves, we studied the effect of spike shape on
the firing dynamics of the neuron. We also found that depending on the topology of the dendritic tree,
and the biophysical characteristics of each compartment, additional compartments provided the model with
increased flexibility in the kinds of behavior that it can exhibit. For example, for some parameters, adding
the dendrite to the soma would enhance the ping-pong effect, and therefore, enhance bistability. Whereas
adding the dendrite to the first dendrite would act a sink, pulling current away from the first dendrite that
would have otherwise gone to the soma where it would facilitate the ping-pong effect. This resulted in lesser
bistability. Dendritic properties have a significant effect on the firing dynamics of the multi-compartment
LIF neuron.

Next, we utilized the theory of weakly-coupled oscillators to study the synchronization dynamics of two
electrically-coupled multi-compartment LIF neurons. We derived the iPRC for the soma and all of the
dendrites. As an example, we focused on the two-compartment model, deriving its iPRC, H and G-functions.
We explored the effects of spike shape on the stability and synchrony characteristics of the system. We found
that thinner spikes, which exhibit afterhyperpolarization, and where less current flows into the dendrites,
can elicit bistability between synchrony and asynchrony. When the shape of the spike is wider, the system
loses this bistability and exhibits only asynchrony. We notice the similarity of the synchrony properties of
our simple two-compartment model to the two-compartment conductance-based model presented in [16],
capturing many of the same bifurcations. Although in our case, we varied the spike shape, which has a
similar effect as varying the injected current, since increasing the spike shape parameter p would increase
the width and height of the spike, increasing the resulting current injected into the dendrites. This suggests
that our simplified multi-compartment leaky integrate-and-fire model captures the same synchrony behaviors
as the full conductance-based equivalent, even in the two-compartment case. Thus, spike shape plays an
instrumental role in affecting the synchronization dynamics of multi-compartment LIF neurons. Further
exploration into the capabilities of the multi-compartment LIF model will help develop a better understanding
of the purpose of dendrites, electrical coupling, and the role of spike shape.
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