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Abstract

Ion channels in the plasma membrane are the functional units of neurons and their
misregulation by anesthetic compounds is thought to be the proximate cause of the
organism-level anesthetic response. However, the mechanism through which general anes-
thetics affect these channels remains an open question: although many drugs function by
binding to receptors in the cell membrane, the variability in compounds that act as anes-
thetics suggests that they may have a different mode of operation. Recent experiments
have shown that anesthetics lower the transition temperature, TC , of a liquid-liquid mis-
cibility critical point of Giant Plasma Membrane-derived Vesicles (GPMVs), and further
that the magnitude of this effect is well correlated with the potency of the anesthetic.
To understand how anesthetics affect TC , we developed a simple Ising model for the
membrane as a 2D binary liquid. In our model, Ising spins represent membrane lipids;
annealed vacancies, which solubilize the two liquid phases, represent anesthetic molecules.
We provide theoretical predictions for 1) the change in Tc of the membrane as a function
of the potency-normalized amount of anesthetic in a volume surrounding it and 2) the
mole fraction of anesthetic in the membrane at anesthetic dose. We demonstrate that
these predictions are in good agreement with results from GPMV assays and synthetic
bilayers, respectively.
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1 Background

The scientific community’s understanding of the function of the cell membrane has undergone
major changes in recent years. The lipid membrane is known to be heterogeneous, and
regulation of this heterogeneity is essential to proper functionality of the cell in a variety
of ways. For example, lipid rafts, organized lipid microdomains in the cell membrane, have
been implicated in functions ranging from signal transduction [1] to ion channel regulation
[2]. These microdomains have been proposed to arise from the cell membrane’s proximity
to a liquid-liquid miscibility critical point, TC [3, 4]. Perturbations of the proximity of the
membrane to TC , such as temperature changes and changes in the cholesterol content of the
membrane, affect the function of numerous membrane-bound proteins and ion channels, as
shown in both experimental [5, 6, 7, 8] and our own simulation-based [Kimchi and Machta,
unpublished results] studies. In fact, it has been hypothesized that anesthetics, whose effect
on numerous ligand-gated ion channels is widely acknowledged as the proximate cause of the
organism-level anesthetic response [9, 6] (for a countering view, see Ref. [10]), act, at least
in part, by perturbing membrane criticality [6]. The motivation for this hypothesis will now
be described in detail.

The clinical effects which define general anesthetics are similar across a wide range of
anesthetics, and furthermore similar across a range of organisms susceptible to anesthesia
[11]. However, the structures of anesthetics are not uniform, with compounds as varied as
Xenon [12], propofol [13], and decanol [14] all exhibiting similar clinical properties, though
each with different potencies (the higher the potency, the lower concentration of the anes-
thetic is necessary to achieve anesthetic effects). Moreover, compounds with similar chemical
structure often have very different anesthetic properties: for example, n-chain alcohols are
anesthetics, but only for n < 13, and the R(+) stereoisomer of isoflurane is about twice as
potent as the S(-) stereoisomer [15, 16]. The variety in the chemical structure of anesthet-
ics, coupled with the large number of receptors affected by anesthetics, have led many to
believe anesthetics exert their influence through nonspecific effects, rather than by binding
to specific proteins [6, 17].

Many of the hypotheses for non-local anesthetic action center around lipid-mediated ef-
fects. These are inspired in a large part by the Meyer-Overton correlation between anesthetic
potency and hydrophobicity (measured through the olive oil-gas partition coefficient), which
spans over four orders of magnitude in overall concentration and predates the discovery of
lipid rafts by nearly a century [18, 19]. The lipid-mediated hypothesis is further strength-
ened by the observation that anesthesia is reversed at pressures of ∼ 150 atm, which are
known to affect membrane lipids but are an order of magnitude too small to affect proteins
directly [20]. At the same time, theories for non-specific anesthetic action have faced some
criticism. It is not clear to what extent the lipid-mediated hypothesis conflicts with evi-
dence in some cases of anesthetics competing with endogenous ligands to bind to proteins,
as has been shown by Franks and Lieb in the case of the firefly luciferase protein [21], and
the hypothesis is not universally accepted [22]. However, further research has demonstrated
that anesthetic inhibition of luciferase is not reversed by high pressures [23, 24] and that
anesthetics generally act as allosteric modulators of ion channels rather than by competitive
inhibition [25].

Recent research by the Veatch group has suggested that anesthetics exert at least some
of their effect by lowering the temperature of the liquid-liquid critical point of the mem-
brane, TC . The temperature of GPMVs is naturally tuned to ∼ 5% above TC (which is
around 289K), and a range of anesthetics have been found to decrease TC by ∼ 4K at
their anesthetic dose, regardless of their respective potencies (Figure 1, reproduced from
Ref. [6]). Furthermore, several non-anesthetic compounds structurally similar to these anes-
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Figure 1: Effect of Anesthetics on TC is Proportional to Anesthetic Potency. The
shift in the critical temperature, TC , of GPMVs after the addition of various n-alcohol
anesthetics is plotted in (A) as a function of anesthetic concentration, and in (B) as a function
of anesthetic concentration normalized by anesthetic potency. The agreement in (B) among
various anesthetics with different potencies suggests that anesthetics may exert at least some
of their effect by changing critical properties of the cell membrane, and demonstrates that
anesthetics’ effect on TC is a good predictor of anesthetic potency. Non-anesthetic DMSO is
used as a control. Figure from Gray et. al (2013) [6]. Reproduced with permission.

thetics (and with similar hydrophobic properties) have been found to not affect TC [6]. In
this way the magnitude of this effect seems to be a better predictor of anesthetic potency
than hydrophobicity. However, it is not clear yet how anesthetics may exert this effect on
membrane criticality.

To understand how anesthetics affect TC , we employ a simple Ising model for the mem-
brane as a 2D liquid. In our model, Ising spins represent membrane lipids, while vacancies,
or zero-spins, represent anesthetic molecules. This model is described in Sections 2 and 3.
Using Monte Carlo simulations (described in Sections 4 and 5) along with a novel technique
for estimating TC (Section 6), we provide a theoretical prediction for the change in TC of the
membrane as a function of the potency-normalized amount of anesthetic in a volume sur-
rounding it, which is demonstrated to be in qualitative agreement with experimental results
from GPMV assays, depicted in Fig. 1. Furthermore, our model provides a prediction for
the mole fraction of anesthetic in the membrane at anesthetic dose, demonstrated to be in
good quantitative agreement with experimental measurements using synthetic bilayers.

2 The Ising Model

The Ising Model was originally developed to describe a ferromagnetic system [26]. Despite its
applicability to numerous other systems, such as the two dimensional miscibility transition
described here, the terminology of the Ising model is based in quantum mechanics. We say
that the Ising model describes a collection of spins, {s} each of which can take on one of two
values, si = ±1. Each spin occupies a point on a lattice which can in principle be of any
size, though for simplicity, we choose it to be a square of area N2 with periodic boundary
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conditions, where we set N = 256 throughout our study. For our purposes, the collection of
spins represents the (two-dimensional) cell membrane, and each si represents a lipid, which
can be either saturated or unsaturated (corresponding to the two values a spin can take).

The Ising model also requires a Hamiltonian, which is a function of a given configuration
of spins in the lattice, {s}:

H ({s}) = −J
∑
〈ij〉

sisj (1)

where 〈ij〉 describes nearest neighbors on the lattice and J > 0 is a constant. Because
the notation H ({s}) can get cumbersome, we define a state, µ, as a given configuration of
spins, and Eµ as the energy for this configuration. In a thermal ensemble, the Hamiltonian
describes a probability for a given state:

P (µ) ∝ e−Eµ/T (2)

where the proportionality constant is defined such that the sum of the probabilities
is unity, T is the temperature of the system, and we have set our units to be such that
Boltzmann’s constant, kB = 1. At low temperatures, the lattice is dominated by either
up or down spins because of the energetic favorability of like spins neighboring one another.
Biologically, these two phases are known as the liquid-ordered phase (lo) phase, and the liquid
disordered (ld) phase [6]. At high temperatures, entropy plays a larger role and the ordering
of the spins is mostly random. The temperature separating these regimes is the critical
temperature of the model, TC , which has been calculated exactly for the two-dimensional
square lattice Ising model to be [27]

TC =
2J

log
(
1 +
√

2
) ≈ 2.269J (3)

Previous experiments have demonstrated that the static behavior of the lipid composition
of the cell membrane near TC is quantitatively similar to1 that of the Ising model near its
TC [28, 29]. This is true even though in the Ising model the fraction of up spins compared to
down spins (known as the order parameter) is variable, while in cell membranes the analogous
parameter is kept constant, or conserved.

3 Adding Anesthetics: The Blume-Capel Model

The Blume-Capel model [30, 31] is an extension of the Ising model which introduces zero-
spins, or vacancies2. These are spins which take on a value of zero, si = 0, and represent
anesthetics in our model. We refer to non-zero spins as “Ising spins”. The Blume-Capel
model is defined by the Hamiltonian:

H = −J
∑
〈ij〉

sisj + µ
∑
i

S2
i . (4)

where µ is the chemical potential of zero-spins, describing how likely they are to appear on
the lattice. As µ→ −∞, the system becomes equivalent to the Ising model described above.
Although J is set at unity for all simulations, we test the effects of a wide range of µ, in order

1i.e. they exhibit the same critical exponents
2The Blume-Capel model is distinguished from the Blume-Emery-Griffiths, or spin-1 Ising, model by the

lack of an interaction term between vacancies in its Hamiltonian [32]. The Blume-Capel model can therefore
be thought of as a specific case of the spin-1 Ising model where this interaction term coefficient, K, is set to
zero.
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Figure 2: Vacancies Are Placed on Boundaries of Ising Spins at Equilibrium Be-
cause vacancies can neighbor either type of Ising spin with no energy cost, the energy of
the system is generally minimized if they are placed at the boundaries between up and
down spins. Gray sites represent vacancies; black and white represent up and down spins,
respectively. The simulation was run at T = 0.8 and µ = 1.9.

to simulate adding varying concentrations of anesthetics. Experimentally, anesthetics are
added to a volume surrounding the cell membrane, and diffuse into the membrane following
basic thermodynamic principles; if we approximate anesthetics as an ideal gas, the simulated
concentration of anesthetics in the volume surrounding the membrane is proportional to the
fugacity, f ≡ eµ/T , in our model [33, 34].

Because vacancies can neighbor either type of Ising spin (or other vacancies, for that
matter) with no energy cost, the energy of the system is generally minimized if they are placed
at the boundaries between up and down spins. A simulation shown in Fig. 2 demonstrates
this behavior at equilibrium (gray sites represent vacancies; black and white represent up
and down spins, respectively). The simulation was run at T = 0.8 and µ = 1.9.

The placement of vacancies on the boundaries of the Ising spins are expected to solubilize
the two phases by decreasing the energy of interaction normally present at their boundary.
This increased solubility should lower the critical temperature by a degree dependent on the
number of vacancies present. Our goal is to determine if the simple model we have defined
above is able to qualitatively replicate the experimental data shown in Fig. 1, which would
demonstrate that anesthetics may solubilize the lo and ld phases just as vacancies act as a
buffer at the interface of up and down spins. To do so, we find TC as a function of µ using
Monte Carlo simulations of the system at varying values of µ. We perform Monte Carlo
simulations using stochastic Metropolis and Wolff dynamics, described below, which sample
states according to the Boltzmann distribution (Eqn. 2).

4 Algorithm for Monte Carlo Simulations: Metropolis Dy-
namics

The standard Monte Carlo simulations for the Blume-Capel model which we utilize here are
Metropolis dynamics which act as follows [35]:
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1. Choose a site in the lattice at random.

2. Choose a value (0,+1, or −1) to which to attempt to flip the spin occupying the site.

3. Calculate the change in the energy of the system, ∆E, associated with this flip.

4. Flip the spin with a probability as a function of ∆E, chosen as to satisfy detailed
balance.

We define a sweep to be N2 repetitions of this procedure, where N2 is the number of
spins on the lattice, such that on average each spin on the lattice attempts to flip once per
sweep.

The probability of flipping the spin in the fourth step of the algorithm must be determined
as to satisfy two fundamental properties of the system: ergodicity and detailed balance.
Ergodicity denotes the property that there is a finite probability of getting from any one
configuration of spins to any other, which is satisfied given the random choices of which spin
to attempt flipping if the flipping probability is always non-zero. Detailed balance is satisfied
if

pµP (µ→ ν) = pνP (ν → µ) (5)

where P (µ → ν) is the probability of transitioning from state µ to state ν given that the
system is in state µ, and pµ is the probability of being in state µ in the first place [36]. The
latter is given by the Boltzmann probability (Eqn. 2), and using this, we rearrange Eqn. 5
to yield

P (µ→ ν)

P (ν → µ)
=
pν
pµ

= e−(Eν−Eµ)/T . (6)

In order to satisfy detailed balance, the probabilities of state transitions must therefore be
chosen so as to satisfy Eqn. 6.

After a spin to attempt to flip has been selected, i.e. the state ν to which to attempt to
switch has been specified, the acceptance of the move, A(µ→ ν) is calculated as a function
of the change in energy resulting from the move, ∆E ≡ Eν − Eµ. We want the acceptance
probabilities to be maximized so that the lattice will spend most of the simulation time
changing states instead of rejecting moves:

A(µ→ ν) =

{
e−∆E/T if ∆E > 0
1 otherwise.

(7)

A system which has our method of choosing states to which to attempt to switch, and
acceptance probabilities of these state transitions given by Eqn. 7 (known as Metropolis
acceptance probabilities) satisfies detailed balance. A detailed proof, along with a derivation
of A(µ→ ν), is presented in Section A.

5 Algorithm for Monte Carlo Simulations: Wolff Dynamics

The Metropolis algorithm is very slow to equilibrate near TC due to a process called “critical
slowing-down”. A quantitative measure of this slowing down is given by τ , the correlation
time of the system, or the typical timescale over which the system reaches an independent
state. For T ∼ TC , τ scales with the size of the system N2 as τ ∼ N2z where z is the dynamic
critical exponent [36]. For the Metropolis algorithm, z ≈ 2, meaning that the computation
time it takes to run each sweep goes as N4 [36]. Since simulations of larger systems are less
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susceptible to error, we set N = 256; this system would take an unreasonably long time to
equilibrate using the Metropolis alrogithm.

Qualitatively, critical slowing down can be explained thus: as temperature is lowered
from infinity, energetic considerations begin to play more of a role compared to entropic, and
the average range over which spins are correlated with one another – the correlation length
ξ – increases. As the correlation length increases, groups of the same spin begin to cluster
together, forming so-called “domains”, which grow in size as the temperature is lowered.
If the Metropolis algorithm samples a spin from the middle of one of these domains, the
probability of flipping it is extremely low, and even if this spin is flipped, it will probably be
flipped back the next time it is selected. This represents an extraordinary amount of wasted
computation time.

There are several algorithms that get around the issue of critical slowing down – and
even experience critical speeding-up – by flipping clusters of spins (which all point in the
same direction) at a time. The fastest is known as the Wolff algorithm [37, 38] which has a
dynamic exponent of z ≈ 1/4 [38, 36]. The Wolff algorithm proceeds as follows:

1. Choose a site in the lattice at random, and unless it is a zero-spin, use it as a seed to
initialize a cluster. If it is a zero spin, pick a new site.

2. Check each of its neighbors, and if they point in the same direction as the seed spin,
add them to the cluster with probability PWolff = 1−e−2/T (this choice of probabilities
is motivated in Section B).

3. Repeat step 2 for each spin added to the cluster, until the addition of the neighbors of
all the spins in the cluster has been attempted (though the addition of some neighbors
may have been attempted more than once if they neighbor multiple spins in the cluster).

4. If the seed spin has value +1 flip all spins in the cluster to −1, and vice versa.

The size of the final cluster that is flipped thus depends only on the temperature of
the system. An example of a cluster flip using the Wolff algorithm is presented in Fig. 3,
reproduced from Ref. [39]. The top-left panel shows the lattice before the cluster flip. The
spins which are part of the cluster which was created are shaded in the top-right panel,
while the cluster is shown in isolation from the rest of the lattice in the bottom-right. The
lattice after the flip is pictured in the bottom-left. The simulation used was performed with
parameter values N = 100, T = 0.97 TC , µ→ −∞.

A proof that the Wolff algorithm obeys detailed balance is presented in Section B. How-
ever, since the Wolff algorithm is only able to act on spins with value ±1, it is insuffi-
cient for ergodicity in our case [40]. With this in mind, we alternate Wolff sweeps with
Metropolis sweeps. For the duration of each Wolff sweep, the vacancies are kept immobile
(or “quenched”), while they are free to flip (or “annealed”) during the Metropolis sweeps.
For detailed balance to be maintained with this approach, a Wolff sweep must be defined by
the number of clusters it flips, rather than by the number of spins flipped (which is how a
Metropolis sweep is defined) [41]. It is not clear how many clusters should be flipped each
Wolff sweep to achieve an optimal equilibration rate, so we use a programming approach
which keeps track of the amount of time it takes to perform each Wolff and Metropolis
sweep: if the amount of time spent on the Wolff sweep exceeds the time spent on Metropolis,
the number of clusters to flip during the next Wolff sweep is increased, and vice versa.
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Figure 3: A Sample Wolff Cluster Flip Top left: initial lattice configuration. Top right,
bottom right: cluster created by Wolff algorithm. Bottom left: lattice configuration after
cluster flip. Simulation run at N = 100, T = 0.97 TC , µ → −∞. Figure reproduced from
Ref. [39].

6 Determining the Critical Temperature

We have already defined the model to be used, as well as the algorithms we use to equili-
brate the lattice. Our goal is to determine TC as a function of the fugacity at TC , eµ/TC .
Previous studies have determined a fast method for determining TC on an Ising lattice with
no vacancies: the invaded cluster algorithm [42, 43]. This algorithm finds the critical tem-
perature by continuously adjusting the temperature at which cluster-flipping Monte Carlo
moves are performed, using a negative-feedback loop, until it reaches the minimum temper-
ature at which a cluster percolates, or reaches from one end of the lattice to the other. This
property of percolating clusters is a property of lattices with T ≤ TC , and is therefore used
to define TC using the invaded cluster approach. For our purposes, however, the invaded
cluster algorithm is not useful since it is not clear to what extent percolating clusters are a
property of the proximity of the system to TC in the Blume-Capel model.

Our approach for finding TC has much in common with the invaded cluster approach.
We start the simulation for a given µ with all spins pointing down, at a temperature we
know is below TC . We then perform alternating Wolff and Metropolis sweeps until the
lattice has reached equilibrium, and check if the lattice has reached TC in a manner we will
explain shortly. If it hasn’t, we increase the temperature by a fixed amount ∆T and allow
the lattice to equilibrate again, repeating the process until TC has been found. Given that
the Wolff and Metropolis algorithms have different correlation times, it is not immediately
clear how many sweeps are necessary to equilibrate the lattice; we found that 1000 rounds of
alternating Wolff and Metropolis sweeps were sufficient for our purposes to reach equilibrium,
though employing longer simulations would likely increase the accuracy of our results. Unless
specified otherwise, we use ∆T = 0.01 for all µ.

The criterion for TC we use is based on the fact that for all temperatures below TC , the
lattice has the property that most of the Ising spins will be either up or down. Wolff moves
will likely change which spin is in excess, but if the Metropolis phase begins with one Ising
spin outnumbering the other for T < TC , this property is not expected to change throughout
the Metropolis phase. Therefore, we find TC as the minimum temperature at which, during
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Figure 4: Change in TC as a Function of Fugacity Left: experimental results for the
unitless change in TC of the cell membrane (∆TC/T

0
C , where T 0

C is the critical temperature
of the cell membrane with no anesthetics added) as a function of the potency-normalized
amount of anesthetic in a volume surrounding the membrane. Calculated using data from
Ref. [6]. Right: Simulation results for the unitless change in TC of the lattice as a function
of the fugacity of the system are in good qualitative agreement with experimental results.
Inset: Our estimation of TC is inherently noisy, leading us to examine a wider range of values
of ∆TC than probed experimentally.

a Metropolis sweep, the numbers of up and down spins in the lattice are equal.
There are two reference points which we used to check the accuracy of our method

against established results. First, for µ→ −∞, our model approaches the Ising model solved
exactly by Onsager to find TC ≈ 2.269; our method, using ∆T = 0.001 and µ = −1000,
finds TC = 2.279, an error of < 1%. Second, the Blume-Capel model contains a tricritical
point which marks the boundary between first-order and continuous phase transitions in the
model. Established values in the literature have placed the tricritical point at µ ≈ 1.9658,
T ≈ 0.6086 [44, 45]; we found, using ∆T = 10−5, that for µ = 1.9658 the critical temperature
is at T = 0.62858. This latter measurement is indicative of a greater imprecision in our
method compared to more rigorous methods (such as finite-size scaling) though this level of
precision is sufficient to determine qualitative agreement or disagreement between our model
and experiment.

7 Results and Discussion

Using the method described in Section 6, we calculated the critical temperature for range
of systems with different values of µ. We used values of µ ranging from µ = 1.95 (near
tricriticality) to µ = −9.0. Increments of ∆µ = 0.05 were used for µ greater than −3.7,
and increments of ∆µ = 0.1 were used for the smaller values of µ, resulting in a total of 167
different values of µ tested. For each µ, we examined the change in critical temperatue due to
the introduction of vacancies into the model: ∆TC/T

0
C , where T 0

C is the critical temperature
defined in Eqn. 3 and ∆TC is the difference between the critical temperature of the system
at µ and T 0

C .
The results of our simulations are plotted on the right in Fig. 4 as a function of the

fugacity of the system, eβµ ≡ eµ/TC . These results are compared to the experimental results
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Figure 5: Mole Fraction of Anesthetics in the Membrane at Anesthetic Dose Left:
our results suggest that ∆TC is expected to scale linearly with the mole fraction of anesthetics
in the membrane, for which the proxy in our model is the fraction of the lattice composed
of zero spins at TC . Right: the nonlinearity observed in Fig. 4 is a result of the nonlinear
relationship between the mole fraction of anesthetics in the membrane and the concentration
of anesthetics in a volume surrounding it.

of Gray et al. (Fig. 4, left) [6]. The noise in our results (Fig. 4, right, inset) leads us to
consider a much wider range of values of µ, and therefore, of changes in TC , than examined
experimentally. Furthermore, because the proportionality constant relating the experimental
potency-normalized concentration of anesthetics and the fugacity in the model is unknown,
direct quantitative comparison of our results to experiment is not possible; however, the
curvature of our results is in good qualitative agreement with experimental results.

Several experiments have measured the Mole Fraction of Anesthetics in the membrane
at anesthetic dose (MFA) [33, 46], though no experiments have yet examined how ∆TC
scales with the MFA. By examining the fraction of the lattice comprised of zero spins at TC
(N0/Ntotal, where N0 is the number of zero spins in the lattice at TC and Ntotal = N2 is the
total number of spins in the lattice), we find that our model predicts a linear relationship
between the MFA and ∆TC (Fig. 5, left). The nonlinearity observed in Fig. 4 is therefore
due to the nonlinear relationship between the fugacity and the fraction of vacancies in the
membrane at TC (Fig. 5, right).

Our model makes a quantitative prediction for the mole fraction of anesthetics in the
membrane at anesthetic dose, which was determined by Gray et al. to be the dose which
decreases TC such that ∆TC/T

0
C ≈ 4/296 [6]. Using the results shown in Fig. 5 (left), we

find that at anesthetic dose,

0.0125 <
N0

Ntotal
< 0.0172. (8)

This prediction agrees well with the results of various experimental studies that have used
synthetic bilayers to examine the mole fraction of anesthetics in the membrane at anesthetic
dose, and found that 0.011 < MFA < 0.045 [46, 47].
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8 Conclusions

Motivated by recent experiments by Gray et al. which suggest anesthetics may exert their
functional effect by perturbing critical properties of cell membranes, we have developed a
simple model for examining the effects of anesthetics on the critical temperature of cell
membranes. We employ the 2D Blume-Capel model, modeling membrane lipids as Ising
spins and anesthetics as vacancies. Using Monte Carlo simulations of the Blume-Capel
model and employing a novel technique for estimating TC , we show that our model exhibits
good agreement with experimental measurements. Our model qualitatively replicates the
experimentally-observed nonlinear relationship between the change in TC of the cell mem-
brane and the potency-normalized concentration of anesthetics in a volume surrounding it
(Fig. 4). Furthermore, our model makes a quantitative prediction of the mole fraction of
anesthetics at anesthetic dose, which is in excellent agreement with experimental results.
Thus, our results suggest that anesthetics solubilize the two liquid phases of the cell mem-
brane (lo and ld) just as vacancies solubilize the two phases of the Ising model.

A Appendix: The Metropolis Acceptance Probability

Here we describe the steps taken to get to Eqn. 7. We start from Eqn. 6. In principle,
any set of probabilities P (µ → ν) will work, as long as they satisfy Eqn. 6, and have the
characteristics of a probability distribution (i.e. 0 ≤ P (µ → ν) ≤ 1 and

∑
ν P (µ → ν) =

1). However, depending on the probability, the simulation will take different times to run.
Minimizing the run time of the simulation implies maximizing the probabilities P (µ → ν).
To simplify our description of the solution we choose, let us write them in another form,
where we take advantage of our simulation algorithm. Our algorithm, as described above,
first picks a state to which to attempt to switch, ν, which differs from the current state, µ, by
a single exchange of spins. We denote the probability of choosing a given state as g(µ→ ν).
Then, the algorithm accepts this change of state with some probability, A(µ→ ν). Therefore,
we can write

P (µ→ ν) = g(µ→ ν)A(µ→ ν) (9)

As described above, the only state to which we attempt to switch in our algorithm is
one which differs from our current state only by an exchange of spins. Furthermore, we
choose from among these states randomly, with no weighting of states. In other terms, for
each iteration of our algorithm, given the system is currently in a state µ, the algorithm will
select a state ν to which to switch with the following probability:

g(µ→ ν) =

{
constant if ν differs from µ by only a spin exchange
0 otherwise.

(10)

For practical purposes, the value of the constant is not important. We can now write
Eqn. 6 for our algorithm as

P (µ→ ν)

P (ν → µ)
=
A(µ→ ν)

A(ν → µ)
= e−(Eν−Eµ)/T (11)

As we have suggested earlier, we want the acceptance probabilities to be maximized so
that the lattice will spend most of the simulation time changing states instead of rejecting
moves. We do this by setting the larger of the acceptance probabilities to unity and the
smaller to be such that Eqn. 11 is satisfied. This acceptance probability is named after N.
Metropolis [35]:
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A(µ→ ν) =

{
e−∆E/T if ∆E > 0
1 otherwise.

(12)

where as before, ∆E ≡ Eν − Eµ.

B Appendix: PWolff and the Wolff Acceptance Probability

Here we describe the motivation for the choice of PWolff , or the probability of adding
similarly-oriented spins to the cluster, given in the text. To review, the Wolff algorithm
picks a spin at random and uses it to initialize a cluster. It then checks each of the neigh-
bors of the seed spin and if they point in the same direction as the seed, adds them to the
cluster with probability PWolff . The neighbors of each of these spins is then checked, and
the process is repeated, until the addition of the neighbors of all the spins in the cluster has
been attempted. Then, the entire cluster is flipped with some acceptance probability A. Our
analysis here closely follows Newman and Barkema’s [36].

Consider a Wolff move which takes the system from state µ to state ν, and consider
also the reverse move, from ν to µ. The probability of choosing the specific cluster that is
flipped in the transition between the two states depends on the probabilities of: 1) adding
to the cluster all of the similarly-oriented spins flipped in the transition between the states,
and 2) not adding to the cluster those spins not flipped in the same transition. The first
probability is the same in the forward and reverse moves, because the probability of adding
any given similarly-oriented spin to the cluster is given by PWolff . However, because the
edges of the cluster in general border different numbers of similarly- and oppositely-oriented
spins, the second probability is different between the forward and reverse moves. Therefore,
the probability of creating the same cluster in the forward move, g(µ → ν) is not the same
as that for the reverse move, g(ν → µ). In fact, their ratio is dependent on the number of
spins not added to the cluster in the forward move, m, and in the reverse move, n:

g(µ→ ν)

g(ν → µ)
= (1− PWolff )m−n. (13)

In order for the system to obey detailed balance, we must therefore assert that

A(µ→ ν)

A(ν → µ)
(1− PWolff )m−n = e−(Eν−Eµ)/T . (14)

We recognize that the difference Eν −Eµ also depends on the difference between m and
n:

Eν − Eµ = 2(m− n), (15)

regardless of whether zero-spins are present in the lattice.
Substituting into Eqn. 14, we find that:

A(µ→ ν)

A(ν → µ)
= [e2/T (1− PWolff )]m−n. (16)

It appears that the acceptance ratios must therefore depend on the specifics of the move
(namely, m and n). However, we notice that for a specific choice of PWolff , we can let the
acceptance ratios for both moves be unity, which is the maximum value they can take. Thus,
we set

PWolff = 1− e−2/T , (17)
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and

A(µ→ ν) = A(ν → µ) = 1. (18)
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