PACM Colloquium: The mathematics of charged liquid drops

Cyrill Muratov, NJ Institute of Technology
Nov 20 2017 - 4:00pm
Event type: 
PACM Colloquium
214 Fine Hall

In this talk, I will present an overview of recent analytical developments in the studies of equilibrium configurations of liquid drops in the presence of repulsive Coulombic forces. Due to the fundamental nature of Coulombic interaction, these problems arise in systems of very different physical nature and on vastly different scales: from femtometer scale of a single atomic nucleus to micrometer scale of droplets in electrosprays to kilometer scale of neutron stars. Mathematically, these problems all share a common feature that the equilibrium shape of a charged drop is determined by an interplay of the cohesive action of surface tension and the repulsive effect of long-range forces that favor drop fragmentation. More generally, these problems present a prime example of problems of energy driven pattern formation via a competition of long-range attraction and long-range repulsion. In the talk, I will focus on two classical models - Gamow's liquid drop model of an atomic nucleus and Rayleigh's model of perfectly conducting liquid drops. Surprisingly, despite a very similar physical background these two models exhibit drastically different mathematical properties. I will discuss the basic questions of existence vs. non-existence, as well as some qualitative properties of global energy minimizers in these models, and present the current state of the art for this class of geometric problems of calculus of variations.

Cyrill Muratov is Professor of Mathematical Sciences at New Jersey Institute of Technology. He received his M.Sc. in Applied Mathematics and Physics from Moscow Institute of Physics and Technology, followed by a Ph. D. in Physics from Boston University and postdoctoral training in Applied Mathematics at the Courant Institute. His main research interests lie in understanding the emergence of complexity from basic constitutive laws in problems of science and engineering, using a combination of rigorous mathematical analysis, formal asymptotics and numerical simulations.