Ramsey number of $n K_{4}$

Robert Rubin, Advisor: Matija Bucic, PACM second reader: Noga Alon

April 18, 2023

1 Introduction

Ramsey's Theorem is a foundational result in combinatorial mathematics which guarantees the presence of a special substructures in any structure of a large enough size. This theorem is usually mentioned in the context of graph theory, where it states that for any two positive integers s and t, there exists a number N such that for $n \geq N$ any red-blue coloring of the edges of the complete graph on n vertices has a red clique containing s vertices or a blue clique containing t vertices. For fixed s and t, the Ramsey number $R(s, t)$ is the minimum value of N for which the statement holds. Ramsey numbers are known for certain classes of graphs, but they quickly become very difficult, if not impossible, to calculate exactly since the number of colorings on a graph of size n is $2^{\binom{n}{2}}$, which grows extremely fast.

One class of graphs of which there has been success calculating Ramsey numbers is the Ramsey number of multiple copies of a graph. Ramsey's theorem can be generalized from cliques to general graphs by defining the Ramsey number of two graphs G and H, written $R(G, H)$ to be the minimal integer N such that any red-blue edge coloring of a complete graph on N vertices must contain a copy of G using only red edges or H using only blue edges. Similarly, we define $R(n G, n H)$ to be the minimal integer N such that any red-blue edge coloring of a complete graph on N vertices must contain n vertex-disjoint copies of G using only red edges or n vertex-disjoint copies of H using only blue edges. Burr, Erdös, and Spencer [2] proved in 1975 that for n_{0} sufficiently large, there exists a constant c such that for connected graphs G, H and $n \geq n_{0}$ we have $R(n G, n G)=(2 k-i) n+c$ where k is the number of vertices in G and i is the largest size of an independent set in G. While this theorem provides insight on the long term behavior of multiple-copy Ramsey numbers, the upper bound on n_{0} is very high, originally triple exponential in k from [2] but recently lowered to single exponential in k from [1]. The value of n_{0} has been found for certain classes of graphs, for example the size of a graph needed to find n vertex disjoint triangles of the same color satisfies $R\left(n K_{3}\right)=5 n$ for $n \geq 2$ [2]. A natural follow-up question is to find the Ramsey number of multiple copies K_{4}, the clique on four vertices. The result $R\left(K_{4}\right)=18$ is well established, but little progress has been made discovering $R\left(n K_{4}\right)$ for small values or finding the value of n_{0} where $R\left(n K_{4}\right)$ converges to its long-term behavior. This independent work aimed to provide new discoveries and insight on both of these areas. While this independent work was unsuccessful in answering the ultimate of question of finding $R\left(n K_{4}, n K_{4}\right)$ for all n, it was successful in finding many intermediate results which make significant progress to answering this question, and in this paper we provide the proof of the first intermediate result, $R\left(n K_{4}, n K_{4}\right)=20$ by showing both a lower and an upper bound of 20 . To prove a lower bound of 20 , we will show that there exists a coloring of a complete graph on 20 vertices such that it does not have a red $2 K_{4}$ or a blue K_{4}, and to show an upper bound of 20 , we will argue that any red-blue coloring of a complete graph on 20 vertices must have a red $2 K_{4}$ or a blue K_{4}.

2 Lower Bound: $R\left(2 K_{4}, K_{4}\right)=20$

Observation 1. $R\left(2 K_{4}, K_{4}\right) \geq 20$

Figure 1: Description of the lower bound graph showing $R\left(2 K_{4}, K_{4}\right) \geq 20$. This graph has 19 vertices without any red $2 K_{4}$ and without any blue $K_{4} . P-v_{1}$ together with either v_{1}, v_{2} or v_{3} forms the Paley graph, which is the single 17 vertex graph without a monochromatic K_{4}.

Proof. Since $R\left(K_{4}, K_{4}\right)=18$, we can create a graph P on 17 vertices that does not contain any K_{4} (the unique Paley graph). Let v_{1} be an arbitrary vertex of P and form the graph G by adding two additional vertices v_{2}, v_{3} to P such that v_{2} and v_{3} are connected to P in the same manner as v_{1} and the edges between v_{1}, v_{2}, and v_{3} are all red. Since P does not contain a monochromatic K_{4}, we know that any monochromatic K_{4} must use two of v_{1}, v_{2}, v_{3}. Thus G must not have a red $2 K_{4}$ because any two K_{4} must intersect in v_{1}, v_{2}, or v_{3}, and G must not have a blue K_{4} because the edges between v_{1}, v_{2}, and v_{3} are all red. Therefore G is a 19 vertex graph with no red $2 K_{4}$ and no blue K_{4}.

3 Upper Bound

In this section, we assume (for sake of contradiction) that there exists a graph G which is a complete graph on 20 vertices whose edges are colored blue or red such that G does not contain a red $2 K_{4}$ or a blue K_{4}. Additionally, let $K_{5}-e$ represent the graph formed by removing one edge from a K_{5}, and in particular, let H represent the specific coloring of a K_{5} which contains a red $K_{5}-e$ and one blue edge.

Theorem 2. G contains a copy of H.

Proof. Since $R\left(K_{5}-e, K_{4}\right)=19$, we know that among any 19 vertices of G, we can find a red $K_{5}-e$. Assume that G does not contain a copy of H, so in all such $K_{5}-e$ the missing edge is red, creating a K_{5}. Let t be the size of the largest red clique in G. Since a red K_{8} creates a red $2 K_{4}$, we must have $5 \leq t \leq 7$, If any vertex sends 3 red edges to our red K_{t}, then this must create a red K_{t+1} if all other edges from this vertex are red or create a copy of H if the vertex sends at least one blue edge to K_{t}, which contradict the fact that the largest clique in G has size t and that G is H free, respectively. Thus each vertex can send at
most two red edges to the K_{t}, so there are at least $(20-t)(t-2)$ blue edges connecting K_{t} to the rest of G. The average blue degree among vertices in K_{t} then is $(t-2)(20-t) / t$ which for all $5 \leq t \leq 7$ is greater than 8. Thus one vertex in K_{t} sends 9 blue edges to $G \backslash K_{t}$, and since $R(4,3)=9$ this must lead to a blue K_{4} or two red K_{4}, one in K_{t} and one in $G \backslash K_{t}$. Therefore we have proven that if G does not have a copy of H, it must have a red $2 K_{4}$ or a blue K_{4}, which is a contradiction to the definition of G.
Theorem 3. $R\left(2 K_{4}, K_{4}\right)=20$
Proof. Assume otherwise, that the counterexample graph G exists. From Theorem 1, we know that G must contain a copy of H. Let w_{1}, w_{2} be the two vertices connected by the blue edge in H, and let v_{1}, v_{2}, v_{3} be the other vertices of H. Additionally, partition our vertices into two sets: $T=\left\{v_{1}, v_{2}, v_{3}\right\}$ which form a red triangle and P encompassing the remaining 17 vertices, and we claim that P must not contain any monochromatic K_{4}. To see this, P cannot contain a red K_{4} because this would have to contain at most one of w_{1}, w_{2} since they have a blue edge between them, allowing the unused vertex of w_{1}, w_{2} together with v_{1}, v_{2}, v_{3} to form a second K_{4}, and we know that P does not have a blue K_{4} since G does not contain a blue K_{4} by assumption. Since $R(4,3)=9$, we can find a K_{3} in either color among any 9 vertices of P. This implies that every vertex in P must have degree 8 in both colors towards other vertices in P and that all vertices in T red degree at least 9 towards P. Let R_{1}, R_{2}, R_{3} be the red neighbors of v_{1}, v_{2}, v_{3} respectively in P, and we know that $w_{1}, w_{2} \in R_{1} \cap R_{2} \cap R_{3}$. We seek to further understand how R_{1}, R_{2}, R_{3} intersect.
Claim 1. Any red edge between vertices in $R_{1} \cap R_{2}$ must intersect all red triangles in R_{3} (in a vertex).
Proof. If this were not the case, then the red triangle in R_{3} together with v_{3} form a red K_{4}, and the two vertices in $R_{1} \cap R_{2}$ together with $v_{1} . v_{2}$ form a second vertex disjoint K_{4}. This contradicts the claim that G does not have a red $2 K_{4}$ or a blue K_{4}.
Claim 2. If some $w \in R_{1} \cap R_{2} \cap R_{3}$ belongs to all red triangles in R_{3}, then w and v_{3} must be joined to every vertex of P by edges of the same color.

Proof. Let P^{\prime} be formed from P by swapping w with v_{3}. We claim that there must not be any monochromatic K_{4} among vertices in P^{\prime}. This implies that each vertex has degree 8 in both colors in both P and P^{\prime}, so w and v_{3} are connected to P with edges of the same colors. To see that there is not any monochromatic K_{4} in P^{\prime}, we first know that G must not have any blue K_{4} by assumption. If there were a red K_{4} in P^{\prime}, it must contain v_{3} and some $x_{1}, x_{2}, x_{3} \in P$ form a red K_{4}, and thus x_{1}, x_{3}, x_{3} form a red triangle in $R_{3}-w$, which is a contradiction.
We call this property mentioned in Claim 2 "connected to P with the same colors" for the remainder of the proof.
Corollary 4. If there is a red edge between $x \in R_{1} \cap R_{2} \backslash R_{3}$ and $w \in R_{1} \cap R_{2} \cap R_{3}$, then w and v_{3} must be joined to very vertex of P by edges of the same color.

Proof. By Claim 1, w must belong to every red triangle of R_{3}, so Claim 2 applies.
Claim 3. $\left|R_{1} \cap R_{2} \backslash R_{3}\right| \leq 1$
Proof. Let $x_{1}, x_{2} \in R_{1} \cap R_{2} \backslash R_{3}$. Claim 1 tells us that x_{1} and x_{2} cannot be connected by a red edge because x_{1} and x_{2} are not in R_{3}. Thus $x_{1} x_{2}$ is blue, and one of the edges between x_{1}, x_{2} and w_{1}, w_{2} must be red or else we have a blue K_{4}. By Corollary 4, one of $w_{1} . w_{2}$ must be connected to P in the same manner as v_{3}, but this is impossible because $v_{3} w_{1}, v_{3} w_{2}$ are both red and $w_{1} w_{2}$ is blue.
Since all of these claims are symmetric to R_{1}, R_{2}, R_{3}, we can use the inclusion-exclusion principle to show
$\left|R_{1} \cap R_{2} \backslash R_{3}\right|+\left|R_{1} \cap R_{3} \backslash R_{2}\right|+\left|R_{2} \cap R_{3} \backslash R_{1}\right|+2\left|R_{1} \cap R_{2} \cap R_{3}\right|=\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right|-\left|R_{1} \cup R_{2} \cup R_{3}\right| \geq 3 * 9-17=10$
Which implies that $\left|R_{1} \cap R_{2} \cap R_{3}\right| \geq 4$. We now seek to tighten the bounds on $\left|R_{1} \cap R_{2} \cap R_{3}\right|$ and $\left|R_{1} \cap R_{2} \backslash R_{3}\right|$.

Claim 4. $R_{1} \cap R_{2} \backslash R_{3}=\emptyset$
Proof. Assume that there is an $x \in R_{1} \cap R_{2} \backslash R_{3}$. If x sends a red edge towards $w \in R_{1} \cap R_{2} \cap R_{3}$ then w must be connected to P in the same manner as v_{3}, but $x w$ is red while $x v_{3}$ is blue since $x \notin R_{3}$. Thus all edges from x to $R_{1} \cap R_{2} \cap R_{3}$ must be blue, which means that $R_{1} \cap R_{2} \cap R_{3}$ must not have a blue triangle to ensure that there is no blue K_{4}.

Let w_{3}, w_{4} be two other vertices in $R_{1} \cap R_{2} \cap R_{3}$ besides w_{1} and w_{2} which we already know are connected by a blue edge. To ensure that there is no blue triangle in $R_{1} \cap R_{2} \cap R_{3}$, there must be at least two red edges between w_{1}, w_{2} and w_{3}, w_{4}. We claim that w_{3}, w_{4} can have red degree at most 1 towards w_{1}, w_{2}. If two red edges come from w_{3} (assume $w_{3} w_{1}$ and $w_{3} w_{2}$ are both red), then by Claim 1 every triangle of R_{2} needs to intersect vertices in both of these edges. Since $w_{1} w_{2}$ is blue, a red triangle cannot contain both of these vertices, so w_{3} must be contained in every red triangle of R_{2}. By Claim 2, w_{3} and v_{2} are connected to P with the same colors, but $w_{3} x$ is blue while $v_{2} x$ is red, which is a contradiction.

We claim that both w_{1} and w_{2} contain red edges to the remainder of $R_{1} \cap R_{2} \cap R_{3}$. If w_{2} is connected in blue to the remainder of $R_{1} \cap R_{2} \cap R_{3}$, then we know that all remaining edges in $R_{1} \cap R_{2} \cap R_{3}$ must be red to prevent a blue triangle. By Claim 1, we know that any red triangle inside any R_{i} must contain two of w_{1}, w_{3}, w_{4}, so w_{2} cannot be in a red triangle contained in any R_{i}. Using Claim 1 again, w_{2} cannot have any red edges to a vertex in the intersection of two R_{i}. Additionally, w_{2} must send at most two red edges to sets of the form $R_{1} \backslash\left(R_{2} \cup R_{3}\right)$. If w_{2} sends three red edges to $R_{1} \backslash\left(R_{2} \cup R_{3}\right)$, then these red neighbors of w_{2} must all be connected with blue edges to prevent a red triangle from forming since such a red triangle would not contain any of w_{1}, w_{3}, w_{4}, but this forms a blue triangle which combined with v_{2} forms a blue K_{4} since v_{2} must be connected in blue to these vertices since they are not contained in R_{2}. Thus we have shown that w_{2} can have red degree at most 6 towards $R_{1} \cup R_{2} \cup R_{3}$. Since each vertex in P has degree 8 in both colors, we must have $\left|P \backslash\left(R_{1} \cup R_{2} \cup R_{3}\right)\right| \geq 2$, so by the same inclusion-exclusion argument as above we get $\left|R_{1} \cap R_{2} \cap R_{3}\right| \geq 5$. Let w_{5} be the fifth vertex in $R_{1} \cap R_{2} \cap R_{3} . w_{2} w_{5}$ must be blue and to prevent a red triangle, all other edges incident to w_{5} must be red. Finally we must have that $w_{1}, w_{3}, w_{4}, w_{5}$ and w_{2}, v_{1}, v_{2}, v_{3} make a $2 K_{4}$, our desired contradiction.
The only remaining case must have two red edges between w_{1}, w_{2} and the remainder of $R_{1} \cap R_{2} \cap R_{3}$ which do not intersect in a vertex. Without loss of generality assume these edges are $w_{1} w_{3}$ and $w_{2} w_{4}$, and we must necessarily have that $w_{1} w_{4}$ and $w_{2} w_{3}$ are both blue. By Claim 1, any red triangle in R_{2} must intersect $w_{1} w_{3}$ or $w_{2} w_{4}$ in a vertex, which implies that $w_{3} w_{4}$ is necessarily red and that this edge is contained in every red triangle in R_{2}. Thus w_{3} and v_{2} must be connected to P with the same colors, but $w_{3} x$ is blue and $v_{2} x$ is red.

Thus the inclusion-exclusion argument from above implies that $\left|R_{1} \cap R_{2} \cap R_{3}\right| \geq 5$.
Claim 5. There can be no vertex $w \in R_{1} \cap R_{2} \cap R_{3}$ which belongs to all red triangles of R_{2}.
Proof. Assume otherwise that there exists $w \in R_{1} \cap R_{2} \cap R_{3}$ which belongs to every red triangle of R_{2}. In the at least four remaining vertices of $R_{1} \cap R_{2} \cap R_{3}$, there must be a red edge $w^{\prime} w^{\prime \prime}$ to prevent a blue K_{4}, so $w^{\prime}, w^{\prime \prime}, v_{1}, v_{3}$ form a red K_{4}. By Claim 2, w and v_{2} are connected to P with the same colors, so w must be conneceted in red to all of R_{2}. Since $\left|R_{2}\right| \geq 9, w$ still has at least 6 neighbors in $R_{2} \backslash\left\{w^{\prime}, w^{\prime \prime}\right\}$, so $R_{2} \backslash\left\{w^{\prime}, w^{\prime \prime}\right\}$ must contain a red edge $x^{\prime} x^{\prime \prime}$. Now $v_{2}, w, x^{\prime}, x^{\prime \prime}$ form a second vertex disjoint red K_{4}.

Claim 6. Any red triangle in R_{2} needs at least 2 vertices from $R_{1} \cap R_{2} \cap R_{3}$.
Proof. Assume otherwise that there exists a red triangle in R_{2} with only one vertex in $R_{1} \cap R_{2} \cap R_{3}$. This triangle together with v_{2} forms a red K_{4}, and since there must be a red edge in the remaining four vertices of $R_{1} \cap R_{2} \cap R_{3}$, the vertices incident to this edge together with v_{1}, v_{3} form a second vertex disjoint K_{4}.

Claim 7. Any red triangle in R_{2} must be completely within $R_{1} \cap R_{2} \cap R_{3}$

Proof. Assume otherwise that there exists a red triangle in R_{2} with exactly two vertices w_{4}, w_{5} contained in $R_{1} \cap R_{2} \cap R_{3}$. There cannot be any red edges in the remainder of $R_{1} \cap R_{2} \cap R_{3}$ because these vertices would have to intersect the triangle by Claim 1, which is impossible. Thus we know that $\left|R_{1} \cap R_{2} \cap R_{3}\right|=5$ to ensure no blue K_{4}, which then implies that the sets of the form $\mid R_{1} \backslash\left(R_{2} \cup R_{3}\right)$ must all be size 4 . Now w_{4} cannot send two red edges to w_{1}, w_{2}, w_{3} because that would force it to be in every red triangle of R_{2}, which contradicts Claim 5. However, w_{4} cannot send all blue edges to w_{1}, w_{2}, w_{3} because that would form a blue K_{4}, so w_{4} (and for the same reasons w_{5} must send exactly one red edge to w_{1}, w_{2}, w_{3}). If w_{4} and w_{5} send red edges to different vertices, then both vertices must be contained in every red triangle of R_{2}, which is once again impossible by Claim 5. If w_{4} and w_{5} send red edges to the same vertex w_{1}, then w_{2}, w_{3} must only send blue edges to the remainder of $R_{1} \cap R_{2} \cap R_{3}$. w_{2} must have red degree 8 towards the rest of P, none of which goes to $R_{1} \cap R_{2} \cap R_{3}$, so at least one of the sets of the form $R_{1} \backslash\left(R_{2} \cup R_{3}\right)$ must receive at least three red edges. Assume without loss of generality that w_{2} sends three red edges to $R_{1} \backslash\left(R_{2} \cup R_{3}\right)$. By Claim 6 , we know that there cannot be a red triangle containing w_{2} and two vertices in $R_{1} \backslash\left(R_{1} \cup R_{3}\right)$, so the red neighbors of w_{2} in this set must form a blue triangle. This blue triangle together with v_{3} forms a blue K_{4}.

To conclude the overall proof, we know that there must be a red triangle in R_{2} because $R(4,3)=9$. By Claim 7, this red triangle must be contained in $R_{1} \cap R_{2} \cap R_{3}$. Claim 5 tells us that no vertex can be in all red triangles of R_{2}, so there must be at least one other red triangle in $R_{1} \cap R_{2} \cap R_{3}$. Claim 1 tells us that these two red triangles must intersect in an edge, and then Claim 5 tells us that there must be a third triangle which does not use a vertex of this shared edge. This must create a red K_{4} in $R_{1} \cap R_{2} \cap R_{3}$, which contradicts our assumption that P does not have any monochromatic K_{4}, completing the proof.

4 Later Results

After achieving this result, we were able to find several other Ramsey numbers for multiple copies of K_{4} and find complete sets of lower-bound graphs computationally, which are shown in the following list. Regarding the lower bound graphs, the notation $(k ; G ; H)$ represents the set of all possible graphs on k vertices without a red G or a blue H. So far, we have been able to find $R\left(n K_{4}, n K_{4}\right)$ for up to $n=3$, and we are optimistic that the Ramsey number for $R\left(n K_{4}, n K_{4}\right)$ will converge to its long term known behavior at $n=4$, which suggests that the problem is close to being solved. These results will hopefully be presented in a later paper.

- $R\left(2 K_{4}, K_{4}\right)=20$
- (16; $\left.2 K_{4} ; K_{4}\right)-50,033,249$ graphs
- $\left(17 ; 2 K_{4} ; K_{4}\right)-28,206$ graphs
$-\left(18 ; 2 K_{4} ; K_{4}\right)-79$ graphs
- $\left(19 ; 2 K_{4} ; K_{4}\right)-1$ graph
- $R\left(3 K_{4}, K_{4}\right)=22$
- $R\left(n K_{4}, K_{4}\right)=4 n+8$
- $R\left(2 K_{4}, 2 K_{4}\right)=22$
- $\left(21 ; 2 K_{4} ; 2 K_{4}\right)-2$ graphs
- $R\left(3 K_{4}, 2 K_{4}\right)=24$
- $R\left(3 K_{4}, 3 K_{4}\right)=27$
- $R\left(\left\{K_{5}-e, 2 K_{4}\right\}, K_{4}\right)=19$

References

[1] Matija Bucic and Benny Sudakov, Tight ramsey bounds for multiple copies of a graph, arXiv preprint arXiv:2108.11946 (2021).
[2] Stefan A Burr, P Erdős, and Joel H Spencer, Ramsey theorems for multiple copies of graphs, Transactions of the American Mathematical Society 209 (1975), 87-99.

