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1 Introduction

Ramsey’s Theorem is a foundational result in combinatorial mathematics which guarantees the presence of a
special substructures in any structure of a large enough size. This theorem is usually mentioned in the context
of graph theory, where it states that for any two positive integers s and t, there exists a number N such that
for n ≥ N any red-blue coloring of the edges of the complete graph on n vertices has a red clique containing s

vertices or a blue clique containing t vertices. For fixed s and t, the Ramsey number R(s, t) is the minimum
value of N for which the statement holds. Ramsey numbers are known for certain classes of graphs, but they
quickly become very difficult, if not impossible, to calculate exactly since the number of colorings on a graph
of size n is 2(

n
2), which grows extremely fast.

One class of graphs of which there has been success calculating Ramsey numbers is the Ramsey number of
multiple copies of a graph. Ramsey’s theorem can be generalized from cliques to general graphs by defining
the Ramsey number of two graphs G and H, written R(G,H) to be the minimal integer N such that any
red-blue edge coloring of a complete graph on N vertices must contain a copy of G using only red edges or H
using only blue edges. Similarly, we define R(nG, nH) to be the minimal integer N such that any red-blue
edge coloring of a complete graph on N vertices must contain n vertex-disjoint copies of G using only red
edges or n vertex-disjoint copies of H using only blue edges. Burr, Erdös, and Spencer [2] proved in 1975 that
for n0 sufficiently large, there exists a constant c such that for connected graphs G,H and n ≥ n0 we have
R(nG, nG) = (2k − i)n+ c where k is the number of vertices in G and i is the largest size of an independent
set in G. While this theorem provides insight on the long term behavior of multiple-copy Ramsey numbers,
the upper bound on n0 is very high, originally triple exponential in k from [2] but recently lowered to single
exponential in k from [1]. The value of n0 has been found for certain classes of graphs, for example the
size of a graph needed to find n vertex disjoint triangles of the same color satisfies R(nK3) = 5n for n ≥ 2

[2]. A natural follow-up question is to find the Ramsey number of multiple copies K4, the clique on four
vertices. The result R(K4) = 18 is well established, but little progress has been made discovering R(nK4) for
small values or finding the value of n0 where R(nK4) converges to its long-term behavior. This independent
work aimed to provide new discoveries and insight on both of these areas. While this independent work was
unsuccessful in answering the ultimate of question of finding R(nK4, nK4) for all n, it was successful in finding
many intermediate results which make significant progress to answering this question, and in this paper we
provide the proof of the first intermediate result, R(nK4, nK4) = 20 by showing both a lower and an upper
bound of 20. To prove a lower bound of 20, we will show that there exists a coloring of a complete graph on
20 vertices such that it does not have a red 2K4 or a blue K4, and to show an upper bound of 20, we will
argue that any red-blue coloring of a complete graph on 20 vertices must have a red 2K4 or a blue K4.

2 Lower Bound: R(2K4, K4) = 20

Observation 1. R(2K4,K4) ≥ 20
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Figure 1: Description of the lower bound graph showing R(2K4,K4) ≥ 20. This graph
has 19 vertices without any red 2K4 and without any blue K4. P − v1 together with
either v1, v2 or v3 forms the Paley graph, which is the single 17 vertex graph without a
monochromatic K4.

Proof. Since R(K4,K4) = 18, we can create a graph P on 17 vertices that does not contain any K4 (the
unique Paley graph). Let v1 be an arbitrary vertex of P and form the graph G by adding two additional
vertices v2, v3 to P such that v2 and v3 are connected to P in the same manner as v1 and the edges between
v1, v2, and v3 are all red. Since P does not contain a monochromatic K4, we know that any monochromatic
K4 must use two of v1, v2, v3. Thus G must not have a red 2K4 because any two K4 must intersect in v1, v2,
or v3, and G must not have a blue K4 because the edges between v1, v2, and v3 are all red. Therefore G is a
19 vertex graph with no red 2K4 and no blue K4.

3 Upper Bound

In this section, we assume (for sake of contradiction) that there exists a graph G which is a complete graph
on 20 vertices whose edges are colored blue or red such that G does not contain a red 2K4 or a blue K4.
Additionally, let K5 − e represent the graph formed by removing one edge from a K5, and in particular, let
H represent the specific coloring of a K5 which contains a red K5 − e and one blue edge.

Theorem 2. G contains a copy of H.

Proof. Since R(K5 − e,K4) = 19, we know that among any 19 vertices of G, we can find a red K5 − e.
Assume that G does not contain a copy of H, so in all such K5 − e the missing edge is red, creating a K5.
Let t be the size of the largest red clique in G. Since a red K8 creates a red 2K4, we must have 5 ≤ t ≤ 7,
If any vertex sends 3 red edges to our red Kt, then this must create a red Kt+1 if all other edges from this
vertex are red or create a copy of H if the vertex sends at least one blue edge to Kt, which contradict the
fact that the largest clique in G has size t and that G is H free, respectively. Thus each vertex can send at
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most two red edges to the Kt, so there are at least (20− t)(t− 2) blue edges connecting Kt to the rest of G.
The average blue degree among vertices in Kt then is (t− 2)(20− t)/t which for all 5 ≤ t ≤ 7 is greater than
8. Thus one vertex in Kt sends 9 blue edges to G \Kt, and since R(4, 3) = 9 this must lead to a blue K4 or
two red K4, one in Kt and one in G \Kt. Therefore we have proven that if G does not have a copy of H, it
must have a red 2K4 or a blue K4, which is a contradiction to the definition of G.

Theorem 3. R(2K4,K4) = 20

Proof. Assume otherwise, that the counterexample graph G exists. From Theorem 1, we know that G must
contain a copy of H. Let w1, w2 be the two vertices connected by the blue edge in H, and let v1, v2, v3
be the other vertices of H. Additionally, partition our vertices into two sets: T = {v1, v2, v3} which form
a red triangle and P encompassing the remaining 17 vertices, and we claim that P must not contain any
monochromatic K4. To see this, P cannot contain a red K4 because this would have to contain at most one of
w1, w2 since they have a blue edge between them, allowing the unused vertex of w1, w2 together with v1, v2, v3
to form a second K4, and we know that P does not have a blue K4 since G does not contain a blue K4 by
assumption. Since R(4, 3) = 9, we can find a K3 in either color among any 9 vertices of P . This implies that
every vertex in P must have degree 8 in both colors towards other vertices in P and that all vertices in T red
degree at least 9 towards P . Let R1, R2, R3 be the red neighbors of v1, v2, v3 respectively in P , and we know
that w1, w2 ∈ R1 ∩R2 ∩R3. We seek to further understand how R1, R2, R3 intersect.

Claim 1. Any red edge between vertices in R1 ∩R2 must intersect all red triangles in R3 (in a vertex).

Proof. If this were not the case, then the red triangle in R3 together with v3 form a red K4, and the two
vertices in R1 ∩ R2 together with v1.v2 form a second vertex disjoint K4. This contradicts the claim that G
does not have a red 2K4 or a blue K4.

Claim 2. If some w ∈ R1 ∩R2 ∩R3 belongs to all red triangles in R3, then w and v3 must be joined to every
vertex of P by edges of the same color.

Proof. Let P ′ be formed from P by swapping w with v3. We claim that there must not be any monochromatic
K4 among vertices in P ′. This implies that each vertex has degree 8 in both colors in both P and P ′, so w

and v3 are connected to P with edges of the same colors. To see that there is not any monochromatic K4 in
P ′, we first know that G must not have any blue K4 by assumption. If there were a red K4 in P ′, it must
contain v3 and some x1, x2, x3 ∈ P form a red K4, and thus x1, x3, x3 form a red triangle in R3 −w, which is
a contradiction.

We call this property mentioned in Claim 2 “connected to P with the same colors" for the remainder of the
proof.

Corollary 4. If there is a red edge between x ∈ R1 ∩R2 \R3 and w ∈ R1 ∩R2 ∩R3, then w and v3 must be
joined to very vertex of P by edges of the same color.

Proof. By Claim 1, w must belong to every red triangle of R3, so Claim 2 applies.

Claim 3. |R1 ∩R2 \R3| ≤ 1

Proof. Let x1, x2 ∈ R1∩R2 \R3. Claim 1 tells us that x1 and x2 cannot be connected by a red edge because
x1 and x2 are not in R3. Thus x1x2 is blue, and one of the edges between x1, x2 and w1, w2 must be red or
else we have a blue K4. By Corollary 4, one of w1.w2 must be connected to P in the same manner as v3, but
this is impossible because v3w1, v3w2 are both red and w1w2 is blue.

Since all of these claims are symmetric to R1, R2, R3, we can use the inclusion-exclusion principle to show

|R1∩R2\R3|+|R1∩R3\R2|+|R2∩R3\R1|+2|R1∩R2∩R3| = |R1|+|R2|+|R3|−|R1∪R2∪R3| ≥ 3∗9−17 = 10

Which implies that |R1∩R2∩R3| ≥ 4. We now seek to tighten the bounds on |R1∩R2∩R3| and |R1∩R2\R3|.
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Claim 4. R1 ∩R2 \R3 = ∅

Proof. Assume that there is an x ∈ R1 ∩ R2 \ R3. If x sends a red edge towards w ∈ R1 ∩ R2 ∩ R3 then w

must be connected to P in the same manner as v3, but xw is red while xv3 is blue since x /∈ R3. Thus all
edges from x to R1 ∩R2 ∩R3 must be blue, which means that R1 ∩R2 ∩R3 must not have a blue triangle to
ensure that there is no blue K4.

Let w3, w4 be two other vertices in R1 ∩ R2 ∩ R3 besides w1 and w2 which we already know are connected
by a blue edge. To ensure that there is no blue triangle in R1 ∩ R2 ∩ R3, there must be at least two red
edges between w1, w2 and w3, w4. We claim that w3, w4 can have red degree at most 1 towards w1, w2. If two
red edges come from w3 (assume w3w1 and w3w2 are both red), then by Claim 1 every triangle of R2 needs
to intersect vertices in both of these edges. Since w1w2 is blue, a red triangle cannot contain both of these
vertices, so w3 must be contained in every red triangle of R2. By Claim 2, w3 and v2 are connected to P with
the same colors, but w3x is blue while v2x is red, which is a contradiction.

We claim that both w1 and w2 contain red edges to the remainder of R1 ∩ R2 ∩ R3. If w2 is connected in
blue to the remainder of R1 ∩ R2 ∩ R3, then we know that all remaining edges in R1 ∩ R2 ∩ R3 must be
red to prevent a blue triangle. By Claim 1, we know that any red triangle inside any Ri must contain two
of w1, w3, w4, so w2 cannot be in a red triangle contained in any Ri. Using Claim 1 again, w2 cannot have
any red edges to a vertex in the intersection of two Ri. Additionally, w2 must send at most two red edges
to sets of the form R1 \ (R2 ∪ R3). If w2 sends three red edges to R1 \ (R2 ∪ R3), then these red neighbors
of w2 must all be connected with blue edges to prevent a red triangle from forming since such a red triangle
would not contain any of w1, w3, w4, but this forms a blue triangle which combined with v2 forms a blue K4

since v2 must be connected in blue to these vertices since they are not contained in R2. Thus we have shown
that w2 can have red degree at most 6 towards R1 ∪ R2 ∪ R3. Since each vertex in P has degree 8 in both
colors, we must have |P \ (R1 ∪R2 ∪R3)| ≥ 2, so by the same inclusion-exclusion argument as above we get
|R1 ∩ R2 ∩ R3| ≥ 5. Let w5 be the fifth vertex in R1 ∩ R2 ∩ R3. w2w5 must be blue and to prevent a red
triangle, all other edges incident to w5 must be red. Finally we must have that w1, w3, w4, w5 and w2, v1, v2, v3
make a 2K4, our desired contradiction.

The only remaining case must have two red edges between w1, w2 and the remainder of R1 ∩R2 ∩R3 which
do not intersect in a vertex. Without loss of generality assume these edges are w1w3 and w2w4, and we must
necessarily have that w1w4 and w2w3 are both blue. By Claim 1, any red triangle in R2 must intersect w1w3

or w2w4 in a vertex, which implies that w3w4 is necessarily red and that this edge is contained in every red
triangle in R2. Thus w3 and v2 must be connected to P with the same colors, but w3x is blue and v2x is red.

Thus the inclusion-exclusion argument from above implies that |R1 ∩R2 ∩R3| ≥ 5.

Claim 5. There can be no vertex w ∈ R1 ∩R2 ∩R3 which belongs to all red triangles of R2.

Proof. Assume otherwise that there exists w ∈ R1 ∩ R2 ∩ R3 which belongs to every red triangle of R2. In
the at least four remaining vertices of R1 ∩R2 ∩R3, there must be a red edge w′w′′ to prevent a blue K4, so
w′, w′′, v1, v3 form a red K4. By Claim 2, w and v2 are connected to P with the same colors, so w must be
conneceted in red to all of R2. Since |R2| ≥ 9, w still has at least 6 neighbors in R2 \{w′, w′′}, so R2 \{w′, w′′}
must contain a red edge x′x′′. Now v2, w, x

′, x′′ form a second vertex disjoint red K4.

Claim 6. Any red triangle in R2 needs at least 2 vertices from R1 ∩R2 ∩R3.

Proof. Assume otherwise that there exists a red triangle in R2 with only one vertex in R1 ∩ R2 ∩ R3. This
triangle together with v2 forms a red K4, and since there must be a red edge in the remaining four vertices
of R1 ∩R2 ∩R3, the vertices incident to this edge together with v1, v3 form a second vertex disjoint K4.

Claim 7. Any red triangle in R2 must be completely within R1 ∩R2 ∩R3
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Proof. Assume otherwise that there exists a red triangle in R2 with exactly two vertices w4, w5 contained
in R1 ∩ R2 ∩ R3. There cannot be any red edges in the remainder of R1 ∩ R2 ∩ R3 because these vertices
would have to intersect the triangle by Claim 1, which is impossible. Thus we know that |R1 ∩R2 ∩R3| = 5

to ensure no blue K4, which then implies that the sets of the form |R1 \ (R2 ∪ R3) must all be size 4. Now
w4 cannot send two red edges to w1, w2, w3 because that would force it to be in every red triangle of R2,
which contradicts Claim 5. However, w4 cannot send all blue edges to w1, w2, w3 because that would form a
blue K4, so w4 (and for the same reasons w5 must send exactly one red edge to w1, w2, w3). If w4 and w5

send red edges to different vertices, then both vertices must be contained in every red triangle of R2, which
is once again impossible by Claim 5. If w4 and w5 send red edges to the same vertex w1, then w2, w3 must
only send blue edges to the remainder of R1 ∩ R2 ∩ R3. w2 must have red degree 8 towards the rest of P ,
none of which goes to R1 ∩R2 ∩R3, so at least one of the sets of the form R1 \ (R2 ∪R3) must receive at least
three red edges. Assume without loss of generality that w2 sends three red edges to R1 \ (R2∪R3). By Claim
6, we know that there cannot be a red triangle containing w2 and two vertices in R1 \ (R1 ∪ R3), so the red
neighbors of w2 in this set must form a blue triangle. This blue triangle together with v3 forms a blue K4.

To conclude the overall proof, we know that there must be a red triangle in R2 because R(4, 3) = 9. By
Claim 7, this red triangle must be contained in R1 ∩ R2 ∩ R3. Claim 5 tells us that no vertex can be in all
red triangles of R2, so there must be at least one other red triangle in R1 ∩ R2 ∩ R3. Claim 1 tells us that
these two red triangles must intersect in an edge, and then Claim 5 tells us that there must be a third triangle
which does not use a vertex of this shared edge. This must create a red K4 in R1∩R2∩R3, which contradicts
our assumption that P does not have any monochromatic K4, completing the proof.

4 Later Results

After achieving this result, we were able to find several other Ramsey numbers for multiple copies of K4 and
find complete sets of lower-bound graphs computationally, which are shown in the following list. Regarding
the lower bound graphs, the notation (k; G; H) represents the set of all possible graphs on k vertices without
a red G or a blue H. So far, we have been able to find R(nK4, nK4) for up to n = 3, and we are optimistic
that the Ramsey number for R(nK4, nK4) will converge to its long term known behavior at n = 4, which
suggests that the problem is close to being solved. These results will hopefully be presented in a later paper.

• R(2K4,K4) = 20

– (16; 2K4; K4) – 50,033,249 graphs

– (17; 2K4; K4) – 28,206 graphs

– (18; 2K4; K4) – 79 graphs

– (19; 2K4; K4) – 1 graph

• R(3K4,K4) = 22

• R(nK4,K4) = 4n+ 8

• R(2K4, 2K4) = 22

– (21; 2K4; 2K4) – 2 graphs

• R(3K4, 2K4) = 24

• R(3K4, 3K4) = 27

• R({K5 − e, 2K4},K4) = 19
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