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Abstract. Motivated by geometric origami and the straight skeleton construction, we
outline a map between spaces of phylogenetic trees and spaces of planar polygons. The
limitations of this map is studied through explicit examples, culminating in proving a
structural rigidity result.

1. Motivation

There has been tremendous interest recently in mathematical biology, namely in the

field of phylogenetics. The work by Boardman [6] in the 1970s on the language of trees

from the homotopy viewpoint has kindled numerous structures of tree spaces. The most

notably could be that of Billera, Holmes, and Vogtmann [5] on a space of metric trees.

Another construction involving planar trees is given in [8], where a close relationship

(partly using origami foldings) is given to M0,n(R), the real points of moduli spaces of

stable genus zero algebraic curves marked with families of distinct smooth points. One

can understand them as spaces of rooted metric trees with labeled leaves, which resolve

the singularities studied in [5] from the phylogenetic point of view.

As there exists spaces of planar metric trees, there are space of planar polygons: Given

a collection of positive real numbers r = (r1, . . . , rn), consider the moduli space of poly-

gons in the plane with consecutive side lengths as given by r; this space can be viewed

as equivalence classes of planar linkages. There exists a complex-analytic structure on

this space defined by Deligne-Mostow weighted quotients [10]. By considering the stable

polygons of this space, it quite unexpectedly becomes isomorphic to a certain geometric

invariant theoretic quotient of the n-point configuration space on the projective line [9].

Our goal, from an elementary level, is to construct and analyze a natural map between

spaces of polygons and planar metric trees. Given a simple planar polygon P , there exists

a natural metric tree S(P ) associated to P called its straight skeleton. It was introduced

to computational geometry by Aichholzer et al. [1], and used for automated designs of

roofs and origami folding problems. We consider the inverse problem: Given a planar

metric tree, construct a polygon whose straight skeleton is the tree.
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Section 2 provides some preliminary definitions and observations, and a topological

framework is provided in Section 3. The notion of velocity in capturing the skeleton of a

polygon is introduced in Section 4, and the main rigidity theorem is given in Section 6:

For a phylogenetic tree T with n leaves, there exist at most 2n − 5 configurations of T

which appear as straight skeletons of convex polygons. Section 5 contains the lemma

which does the heavy lifting, which is analogous to the Cauchy arm lemma, used in the

rigidity of convex polyhedra [7, Chapter 6]. Finally, section 7 closes with computational

issues related to constructing the polygon given a tree, which also uncovers ties to a much

older angle bisector problem.

Acknowledgments. We thank Oswin Aichholzer, Erik Demaine, Robert Lang, Stefan Langer-

man, and Joe O’Rourke for helpful conversations and clarifications, and especially Lior

Pachter for motivating this question. We are also grateful to Williams College and to the

NSF for partially supporting this work with grant DMS-0850577.

2. Preliminaries and Properties

2.1. In this paper, whenever the term polygon is used, we mean a simple polygon P .

The medial axis of P is the set of points in its interior which are equidistant from two or

more edges of P . It is well known that if the polygon is convex, the medial axis is a tree

[7, Chapter 5]: The leaves of this tree are the vertices of P , and the internal nodes are

points of P equidistant to three or more sides of the polygon.

If the polygon has a reflex vertex, however, the medial axis (in general) will have a

parabolic arc. The straight skeleton S(P ) of a polygon P is a natural generalization of the

medial axis, which constructs a straight-line metric tree for any simple polygon [1]: For

a polygon, start moving all of the sides of the polygon inward at equal velocity, parallel

to themselves. These lines, at each point of time, bound a similar polygon to the original

one, but with smaller side lengths. Continue until the topology of the polygon traced out

by this process changes. One of two events occur:

1. Shrink event : When one of the original sides of the polygon shrinks to a point,

two non-adjacent sides of the polygon become adjacent. Continue moving all the

sides inward, parallel to themselves again.

2. Split event : When one of the reflex vertices in the shrinking polygon touches a

side of the polygon, the shrinking polygon is split into two. Continue the inward

line movement in each of them.

The straight skeleton is defined as the set of segments traced out by the vertices of the

shrinking polygons in the above process. Indeed, the straight skeleton is a tree, with the



SKELETAL RIGIDITY OF PHYLOGENETIC TREES 3

vertices of the polygon as leaves. Figure 1(a) shows the example of the medial axis of a

nonconvex polygon, along with its piecewise-linear straight skeleton in part (b).

( a ) ( b )

Figure 1. (a) Medial axis and (b) straight skeleton.

For convex polygons, the medial axis and the straight skeleton coincide. Furthermore,

it will be useful for us to view the medial axis through this straight skeleton process lens.

In this case, only shrink events occur.

2.2. Consider a map Φ from the space of simple polygons to the space of phylogenetic

trees, defined as sending a polygon to its straight skeleton. In this section, we explore

some basic properties of the map. The reader is encouraged to consult [2], where geometric

details are given, and from which we inherit certain terminology.

Definition. Each edge of a phylogenetic tree is assigned a nonnegative length, and each

internal vertex has degree at least three. A phylogenetic tree where the cyclic order of

incident edges around every vertex is predefined is called a phylogenetic ribbon tree.1

Notation. Let G be the set of phylogenetic ribbon trees. Let E(G) denote a planar

embedding of G ∈ G with straight-line edges, and respecting the predefined cyclic ordering

around each vertex. Moreover, define PE(G) to be the polygon resulting from connecting

the leaves of E(G) in cyclic order traversing around the tree.

Definition. A simple polygon PE(G) is suitable if E(G) equals its straight skeleton

S(PE(G)), called a skeletal configuration of G. If there exists a suitable polygon for a

tree G ∈ G, we say G is feasible.

We consider two natural examples of trees: stars and caterpillars. A star Sn has n+ 1

vertices, with one vertex of degree n connecting to n leaves. A caterpillar becomes a path

if all its leaves are removed.

Proposition 1. There exist infeasible stars and caterpillars of G. Thus Φ is not surjective.

1This is sometimes called a fatgraph as well [12].
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Proof. Consider a star S3n with edges e0, e1, . . . , e3n−1 in clockwise order. We set the edge

length of ei to be equal to x if i ≡ 0 mod 3, and equal to y otherwise. We claim that if

n ≥ 3 and the ratio x/y is sufficiently small, then this tree cannot be the straight skeleton

of any polygon; see Figure 2(a) for the case n = 3.

( a ) ( b )
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O

y

y y

y
y

y
y

y

x

x

x

x

α

αα

β

Figure 2. Infeasible stars.

Let O be the center of the star, and A,B,C denote leaves with edges AO and BO of

length y and CO of length x; see Figure 2(b). In order to have a straight skeleton, edge

BO must bisect ∠ABC into two angles of measure α. Defining β := ∠AOB, note that

since triangle AOB is isosceles, β = π − 2α. As the length of x decreases relative to y, α

becomes arbitrarily close to zero. Then β must approach π; specifically, β can be made

greater than 2π/3. Since star S3n has n ≥ 3 groups of three consecutive {x, y, y} edges,

then at least three such angles β around the center O are greater than 2π/3, giving a

contradiction.

Figure 3. Infeasible caterpillars.

The stars above can be tweaked to show infeasible caterpillars, as given in Figure 3,

with a nearly identical proof, taking internal edges to be arbitrarily small. �

Proposition 2. There are feasible caterpillars for which multiple suitable polygons exists.

Thus, Φ is not injective.
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Proof. Consider the tree G, as drawn in Figure 4, with two edge lengths x and y, with

y substantially larger than x. There exist multiple orthogonal polygons with straight

y y y

Figure 4. Caterpillars with multiple suitable polygons.

skeletons equivalent to G, as in Figure 5. We can divide a polygon into two pieces by

cutting along a line perpendicular to a skeleton edge of length y. Fixing one side of the

divided polygon, reflecting the other side, and then gluing results in another polygon

with the same straight skeleton. Note that this transformation can be performed at each

skeleton edge of length y. �

Figure 5. Distinct suitable polygons for the same caterpillar graph.

3. Tree Topology

We now consider questions related to the deformations of phylogenetic trees and their

respective polygons from a topological perspective. Indeed, as one would expect, disre-

garding the edge lengths trivializes numerous questions. We say two trees in G have the

same topology if they are equivalent as abstract graphs. If we consider Φ as a map between

polygons and topological trees, then the following shows the surjectivity of this map.

Proposition 3. For any G ∈ G, there exists a feasible tree with the topology of G.

Proof. Let r be an internal vertex of G, and let v1, . . . vn denote the vertices adjacent to r.

Associate each vertex of a regular n-gon P to a unique vi, preserving the cyclic ordering

in G. We algorithmically modify P so that its straight skeleton has the topology of G, as

follows. Suppose that some vi is adjacent to k other vertices s1, . . . , sk of G (of depth 2).



6 HOWARD CHENG, SATYAN L. DEVADOSS, BRIAN LI, AND ANDREJ RISTESKI

Then replace the vertex of P associated to vi with k new vertices forming k−1 sufficiently

small edges in such a way that the angle bisectors of the k vertices all intersect at a point.

One can view this as ‘truncating’ the vertex to create k new vertices (see Figure 6); this is

possible since the truncations can be arbitrarily small. Associate each new vertex of the

truncated polygon to each si, again preserving the cyclic ordering of the vertices. This

truncation procedure is repeated until the process terminates, that is, until each vertex of

the truncated polygon is associated to a leaf in G. The final polygon then has a straight

skeleton with the same topology as G. �

Figure 6. Iterative truncation of a polygon resulting in a feasible tree.

For a polygon P with n edges, we may embed P in the plane and let (xi, yi), 1 ≤ i ≤ n
denote its vertices in R2. So we can associate P to a point γ(P ) in R2n, where

γ(P ) = (x1, y1, x2, y2, . . . , xn, yn).

Two polygons P1 and P2 are isotopic if there exists a (continuous) isotopy f : [0, 1] −→ R2n

such that f(0) = γ(P1), f(1) = γ(P2), and for every t ∈ [0, 1], f(t) = γ(P (t)) for some

simple polygon P (t), and some appropriate ordering of the vertices. The following shows

that convex polygons with identical event chronologies in the preimage of a topological

tree under Φ are in the same isotopy class.

Theorem 4. Let P1 and P2 be convex polygons having identical event chronologies, with

topologically equivalent straight skeletons. Then there exists an isotopy between P1 and P2

such that S(P (t)) is topologically equivalent to S(P1) and S(P2), for all t.

Proof. We proceed by induction on the number of vertices of P1 and P2. The base case

on three vertices is easily checked, so assume the statement holds for polygons on n

vertices, and suppose that P1 and P2 have n + 1 vertices. Observe that the shrinking

process that defines the straight skeleton is an isotopy of polygons (under a suitable time

reparameterization), until an event occurs. Since P1 and P2 are convex, the only events

which can occur are shrink events, with a polygonal edge shrinking to zero. When these
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events occur, the number of vertices of the shrinking polygon decreases by at least one, so

we obtain convex polygons P ′1 and P ′2 on n vertices, whose straight skeletons have identical

event chronologies and the same topologies.

By the induction hypothesis, there is an isotopy f ′ between P ′1 and P ′2 fulfilling the

desired conditions. Now consider the isotopy g1 obtained from stopping the shrinking

processes for P1 at some time ε1 before the first event occurs; see Figure 7(a) to (b).

Similarly, we let g2 denote the isotopy from stopping P2 at some time ε2 before the first

event; see Figure 7(d) to (c). For sufficiently small ε1 and ε2, the vertices of the polygons

at the ends of the isotopies g1 and g2 become arbitrarily close to the vertices of P ′1 and

P ′2. We can then use f ′ to construct an isotopy f ′′ (from part (b) to (c) of the figure) such

that g−12 ◦ f ′′ ◦ g1 is the desired isotopy from P1 to P2 (up to time reparameterization)

satisfying the conditions of the theorem. �

( a ) ( b ) ( c ) ( d )

Figure 7. Isotopic deformation of the straight skeletons.

4. Velocity Framework

The following sections consider an appropriate concept of rigidity for phylogenetic trees.

Recall that a skeletal configuration of a phylogenetic tree G ∈ G is a planar embedding of

G such that it is the straight skeleton of the polygon that is determined by the leaves.

Definition. A skeletal configuration E(G) of a tree G ∈ G is rigid if, in the space of

deformations of planar embeddings of G, E(G) is an isolated skeletal configuration.

Our main result, Theorem 8, shows a condition stronger than rigidity when restricted to

the case of convex polygons. Our method of attack is to consider an alternative method

based on velocity to interpret how the straight skeleton is constructed: Since each edge e
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of the straight skeleton is traced out by the polygonal vertices, a velocity can be assigned

to the vertex tracing out edge e.

We start by applying this idea to the simplest types of trees: Consider a star Sn ∈ G,

consisting of a center vertex O, and edges ei incident to leaves vi. During the straight

skeleton construction, assuming each polygonal edge moves inward with unit velocity, each

vertex vi of the polygon can be assigned a velocity νi. Then the amount of time vertex vi

requires to traverse its edge ei is l(ei)/νi, where l(ei) is the length of edge ei. Since Sn is

a star, all vertices start and end their movement during the skeletal construction at the

same time, meeting at the center O. Thus

(4.1)
l(ei)

νi
=

l(e1)

ν1
,

for each 2 ≤ i ≤ n, establishing the relative velocities of all the vertices.

There is also a useful relationship between the angles subtended at the vertices and

their speed. Assume that the angle at vertex v is 2α if the angle at v is convex, or 2π−2α

if it is reflex. If the sides incident on v have been moving for time t at unit speed, they will

have traversed t units, with vertex v reaching another point w. From Figure 8, it follows

that t(sinα)−1 is the length of vw, implying the velocity of vertex v to be ν = (sinα)−1.

v

t

α α

w

v

t

α α

w

Figure 8. Relationship between angle and speed.

Remark. If α ≤ π/2 (convex), then α = arcsin(1/ν). Otherwise α > π/2 (reflex) and

α = π−arcsin(1/ν). Since, a priori, we do not know whether the vertex angles are convex

or reflex, we denote arcsin∗ θ = {arcsin θ, π − arcsin θ}, to alleviate notational hassle.

We now use the above observations to obtain the following:

Proposition 5. A star graph G has a finite number of skeletal configurations. In other

words, there are a finite number of suitable polygons for G.
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Proof. The sum of the internal angles of a polygon with n vertices is (n − 2)π. So if the

angle subtended at vertex vi for a suitable polygon of G is 2αi, then

α1 + · · · + αn =
(n− 2) · π

2
.

In light of Eq. (4.1), this can be rewritten as

(4.2) arcsin∗
(

1

v1

)
+ arcsin∗

(
l(e1)

l(e2) · v1

)
+ · · ·+ arcsin∗

(
l(e1)

l(en) · v1

)
=

(n− 2)π

2
.

Since the lengths of the star edges are fixed, this can be viewed as an equation in 1/ν1. We

show this equation, for each possible choice for arcsin∗, leads to at most a finite number

of solutions.

First assume that once Eq. (4.2) is rewritten as

φ := arcsin(m1x) ± arcsin(m2x) ± . . . ± arcsin(mnx) = c,

the constant term c is nonzero. Since the Maclaurin series expansion for arcsin is

arcsin z =
∞∑
k=0

(2k)!

22k (k!)2 (2k + 1)
z2k+1 ,

then φ also has an infinite series expansion when all of the mix terms are between -1 and

1. Hence, if φ− c has an infinite number of solutions on a bounded interval for x, it must

be identically zero. But notice that arcsin(mix) has no constant term in the infinite series

expansion. Because c is nonzero, φ − c cannot be identically zero, a contradiction. Thus

there are at most a finite number of solutions in this case.

Now assume the constant term c vanishes. One can show that at least one arcsin(mix)

term will remain in Eq. (4.2). Out of all such terms, consider the one with the maximum

mi value, say m̂. Looking at the Maclaurin series expansion again, for sufficiently large k,

the coefficient in front of z2k+1 will be dominated by

(2k)! m̂2k+1

22k (k!)2 (2k + 1)

since m̂ must be positive and strictly larger than all other mi values. Thus, for sufficiently

large k, the coefficient in front of z2k+1 will not vanish, and therefore φ − c cannot be

identically zero, a contradiction. �

Remark. In [2, Lemma 8], every caterpillar graph is shown to have a finite number of

skeletal configurations, using different proof techniques.

5. Racing Lemma

Let P be a convex polygon, and P (t) denote the polygon formed by the edges of P

moving inwards at unit speed at time t. Suppose that there are a total of n events which
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occur at times t1 < . . . < tn. Observe that P (t1), . . . , P (tn−1) forms a sequence of polygons

with a strictly decreasing number of vertices, resulting in the point P (tn). We call P (tn)

the chronological center of polygon P . Figure 9(a) shows an example, where the direction

on the edges of S(P ) is based on how the skeleton is constructed. The unique sink of this

directed graph is the chronological center. We omit the proof of the following:

Lemma 6. Let P be a convex polygon. If P is in general position, then cc(P ) is a vertex

of S(P ); otherwise, cc(P ) is either a vertex or an edge of S(P ).

( b )( a )

CC

CC CC

Figure 9. Chronological centers of polygons.

Remark. It is worth noting that the chronological center can be generalized for nonconvex

polygons as well: Here, multiple sinks will appear, one for each polygon that shrank to a

point during an event, such as in Figure 9(b).

Our key lemma is an analog of Cauchy’s Arm Lemma in the theory of polyhedra re-

construction: The arm lemma states that if we increase one of the angles of a convex

polygonal chain, the distance between the endpoints will only increase. To parallel this,

we show that increasing one of the velocities of the leaves causes all velocities in the tree

to be increased. More specifically:

Racing Lemma. Let G ∈ G be the skeletal configuration of a suitable convex polygon P .

If we increase the velocity of one of the leaves a sufficiently small amount, the velocities

of all nodes of G (other than chronological center) must increase in order for G to remain

a skeletal configuration.

Proof. Root G at its chronological center cc(G), which we assume to be a vertex of G.2

Notice that this uniquely determines the order in which the shrink events occur in the

2The case when cc(G) is not a vertex is considered later.
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tree. We prove a slightly stronger claim, namely that for any subtree with a root distinct

from the chronological center, increasing the velocity of one of the leaves in the subtree

an arbitrarily small amount forces the velocities of all nodes in the subtree to increase.

Proceed by induction on the maximum depth of the subtree, where the depth is the

defined as the maximum topological length of a path from the root to a leaf in the subtree.

If the maximum depth of the subtree is one, we have a group of leaves with a common

parent. Let the leaves have velocities ν1, . . . , νk. If the lengths of the edges from the parent

to the leafs are l1, . . . , lk, correspondingly, then li/νi = lj/νj . Thus, if the velocity of one

leaf increases, so must all others.

Now consider a subtree of depth k with root O, and let the children of O be O1, . . . Om.

Since G is a skeletal configuration of P , the subtree of O corresponds to P being “chiseled

out” by two supporting lines AB and AC as shown in Figure 10. Here, the sequence of

A

C

B

O

O1

O2

O3

O4

α1
α1

α2

α2

α3

α3

α4

α4

Figure 10. Tree to polygon perspective for the Racing Lemma.

edges lying between the edges of the polygon corresponding to lines AB and AC will have

shrunk before the occurrence at node O, where the lines of OOi are angle bisectors of some

(possibly non-adjacent) edges of P . Since AO is an angle bisector of the angle between

lines AB and AC, arithmetic shows that

ψ :=
π(m− 1)− (π − 2α1)− (2π − 2α2)− · · · − (2π − 2αm−1)− (π − 2αm)

2
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equals ∠BAO and ∠CAO. Now if Oi has velocity (sinαi)
−1, then O has velocity arcsinψ.

Since the polygon is convex, however, αi and ψ are convex angles, where sin is monoton-

ically increasing. Therefore, if the velocities (sinαi)
−1 of nodes Oi increase, so does the

velocity of O.

Assume we increase the velocity of a leaf in the subtree of O1. Then, by the inductive

hypothesis, all of the vertices in O1’s subtree (including O1) will increase in velocity, so

that O1 finishes tracing out edge O1O faster than before. For any other child Oi of O, since

the edge OiO is traced out at the same time as O1O, the velocity of O also increases. �

Remark. This lemma can be strengthened to include convex polygons in degenerate posi-

tions, where from Lemma 6, the chronological center can be an edge, with endpoints T1

and T2. If we increase the velocity of a leaf in tree T1, all of the vertices of the nodes of T1

will increase. But since both endpoints will be reached at the same time, it follows that

all nodes in T2’s subtree must increase their velocities.

6. Convex Rigidity

One more lemma is needed in order to prove the main rigidity result:

Lemma 7. Let G ∈ G, with a fixed chronological center, and an assignment of velocities

to each leaf. Then there is at most one suitable convex polygon.

Proof. This is based on induction on the number of edges of tree G. The claim is true for

any tree with three edges by Proposition 9, so the base case is covered. Now consider a

phylogenetic tree with k edges. We will use the relationship between the angles subtended

at the vertices and their speed. Assume there are two distinct, convex polygons P and

Q with the same angles (corresponding to velocity assignments), both with G as their

skeleton, with identical chronological centers. Label the vertices of G the same for both

P and Q, but bear in mind G has different embedding for the two polygons.

Let the first event be the simultaneous shrinking of edges A1A2, . . . , Am−1Am. Since the

velocities of the leafs are equal, and the chronological center is the same, this same event

must happen first for both polygons. (Remember, rooting the tree in the chronological

center uniquely determines the event sequence.) Let O be the parent of leaves A1, . . . , Am

in G. Notice that all of the triangles OAiAi+1 must be congruent in P and Q.

Let B and C be vertices of the polygons adjacent to A1 and Am, respectively. Let the

intersection of lines A1B and AmC be at point A; see Figure 11. Consider the polygons

in P and Q with vertices AA1 . . . Am (shaded red in Figure 11): the edges AiAi+1 are

all equal, as are the angles subtended at vertices Ai by the congruence of the triangles

OAiAi+1. So these polygons must be congruent in P and Q, implying the angle A1AAm
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A

C

B

O

A2

A3

A4

A1

Figure 11. Construction of congruent polygons.

and the length OA be identical in both P and Q as well. Deleting all Ai vertices and

adding vertex A creates new convex polygons P ′ and Q′ with new sides BA and AC, both

with identical angles at all leaves, with the same underlying skeleton. By the induction

hypothesis, they are congruent polygons, implying that P and Q cannot be distinct. �

Theorem 8. For G ∈ G with n leaves, there are at most 2n− 5 suitable convex polygons.

Proof. It is sufficient to prove that for each possible choice of a chronological center for

G, there exists at most one suitable convex polygon for G. Since G has n − 3 interior

edges and n − 2 interior vertices, there are 2n − 5 possible chronological center choices.

Fix the chronological center in an edge or vertex of G, and let the vertices vi of P move

with velocities νi. By Lemma 7, there is at most one suitable convex polygon P .

The angle αi of the convex polygon subtended at vi is 2 arcsin(1/νi), resulting in

n∑
i=1

arcsin

(
1

νi

)
=

(n− 2)π

2
.

For contradiction, assume there is another set of velocities ν ′i resulting in a valid skeletal

configuration with the same chronological center. Without loss of generality, assume

ν ′1 > ν1. Then by the Racing Lemma, ν ′i ≥ νi for all i, implying

(n− 2)π

2
=

n∑
i=1

arcsin

(
1

ν ′i

)
<

n∑
i=1

arcsin

(
1

νi

)
=

(n− 2)π

2
,



14 HOWARD CHENG, SATYAN L. DEVADOSS, BRIAN LI, AND ANDREJ RISTESKI

a contradiction. �

7. Computational issues

7.1. While the previous sections were focused on the rigidity of the skeletal configu-

rations, nothing was said about how one would go about constructing a valid skeletal

configuration when provided with a phylogenetic tree. We begin with an algebraic proof

of the rigidity of trivalent stars of Proposition 5, helping pave the way for some discussion

on the computational issues involved in the problem.

Proposition 9. There is a unique suitable triangle for every star S3 of degree three.

Proof. Assume an embedding of a star S3 is given which is the straight skeleton of the

triangle determined by the leaves. Let the angles of the triangles be 2α, 2β, and 2γ at

vertices A,B, and C respectively, as in Figure 12.

A

C

B

O

α

α

γγ

β

β

Figure 12. Suitable triangle of a trivalent star.

The law of sines applied to triangle AOC yields

AO

sin γ
=

CO

sinα
.

Since γ = π
2 − α− β, it follows that

AO

sin γ
=

AO

cos(α+ β)
=

AO

cosα cosβ − sinα sinβ
=

AO√
1− sinβ2

√
1− sinα2 − sinα sinβ

.

Thus
AO√

1− sinβ2
√

1− sinα2 − sinα sinβ
=

CO

sinα
.

The law of sines applied to triangle AOB results in

AO

sinβ
=

BO

sinα
,

which together with the previous equation produces the following polynomial:

(7.1) (2AO2 ·BO ·CO) x3 +(AO2 ·CO2 +AO2 ·BO2 +BO2 ·CO2) x2− (CO2 ·BO2) = 0



SKELETAL RIGIDITY OF PHYLOGENETIC TREES 15

Since the polynomial cannot vanish identically, we have three solutions, counting multi-

plicities. The discriminant of the equation is

∆ = −27CO4 ·BO4 + (BO2 + CO2(1 +BO2))3.

By the arithmetic mean – geometric mean inequality,

BO2 + CO2(1 +BO2) ≥ 3(BO2 · CO2 · (CO2BO2))
1
3 ,

showing ∆ ≥ 0. So the solutions of the equations are all real, say x1, x2, x3. By Vieta’s

formulas, we have the following system,

x1 + x2 + x3 = − b
a

x1x2 + x1x3 + x2x3 = 0

x1x2x3 =
c

a

showing that exactly two of the roots are negative, and exactly one (say x1) is positive.

If x1 > 1, then the left hand side of Eq. (7.1) is positive, which cannot be as x1 is a root.

Thus, x1 ≤ 1 must hold, being a valid value for sinα, and the only such value. �

7.2. The above approach can be pushed to give rise to a connection between our problem

and the angle bisector problem, a geometric problem dating back to Euler, thoroughly

studied in [4]:

Angle Bisector Problem. Construct a triangle given the lengths of the angle bisectors.

In the work of Baker [14], it is proven that this is impossible with ruler and compass,

and the nature of the polynomial equations given the triangle lengths is studied. Our

problem for the case of the triangle is slightly different, since the incenter is given as

well. But considering the straight skeletons of arbitrary polygons, it can be viewed as a

generalization of the angle bisector problem.

Lemma 10. The suitable triangle for star S3 with integer edge lengths may not be con-

structible with ruler and compass.

Proof. Let O be the center of the star, and A, B, C be the leaves, again as in Figure 12.

Consider the star edge lengths where AO = r, BO = 2r, CO = 3r, for r ∈ N. Then

Eq. (7.1) becomes

12r3 + 49r2 − 36 = 0.

Any rational root a/b of this equation is such that a divides 36 and b divides 12; by exhaus-

tion, no such combination succeeds. But if a cubic equation with rational coefficients has

no rational root, then none of its roots are constructible. So for these particular values,
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sinα is not constructible. Thus, if the triangle was constructible, then clearly α, as well

as sinα, are constructible as numbers, a contradiction. �

7.3. Consider the problem of constructing the suitable polygon for a feasible phylogenetic

tree. We close with discussing unsolvability issues of this problem when constrained to

the algebraic model: only the arithmetic operations +,−,×, / along with k
√

of rational

numbers are allowed.

Lemma 11. Let G ∈ G be a phylogenetic tree with rational edge lengths. In general, the

convex suitable polygon P for G has side lengths not expressible by radicals over Q.

Proof. Consider a star S3 with edge lengths r, r, r, 10r/11, 10r/12, for r ∈ N. For a suitable

convex polygon P , the sum of the interior angles yields

(7.2) 3 · arcsin(x) + arcsin

(
11x

10

)
+ arcsin

(
12x

10

)
=

3π

2
,

where x−1 equals the velocity ν at the leaf with edge length r. It is not hard to see that

if Eq. (7.2) has a solution, there exists a suitable polygon P for G.

Now we show that the edge lengths of P are not expressible as radicals over Q. By

rewriting arcsinx in its logarithmic form as −i ln(ix +
√

1− x2), and substituting into

Eq. (7.2), x becomes the square root of one of the zeros of the polynomial

p(x) = 1− 2330x+ 1837225x2 − 653926400x3 + 111607040000x4

−8795136000000x5 + 256000000000000x6.

The discriminant of polynomial p is

∆(p) = 274 · 36 · 530 · 116 · 232 · 29 · 31 · 792 · 43151 · 2626069.

Since p is irreducible modulo 13, and since 13 does not divide 1 (the constant term), p

is irreducible. Considering p modulo 7, 13, and 17 (the “good” primes), we get a (2+3)-

permutation, a 5-cycle and a 6-cycle as the Galois groups, respectively, showing the Galois

group of p is the symmetric group S6 on six letters [3, Lemma 8]. Since S6 is not solvable,

then x = 1
ν = sinα is not expressible using arithmetic operations and k

√
of rational

numbers, where α is the angle subtended at the vertex with velocity ν. But since sinα

can be expressed as an expression involving arithmetic operations on radicals of the side

lengths of polygon P , and the edge lengths of tree G, the claim holds. �

Remark. Of course, the fact that the side lengths are not expressible via radicals over Q
implies that the coordinates of the vertices of the polygon must also not be expressible

via radicals over Q.
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Open Problem. Construct an algorithm approximately calculating a polygon from a given

phylogenetic tree.

Open Problem. For a given phylogenetic tree, provide a rigidity result for arbitrary

suitable polygons, not just convex ones.
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