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Abstract. Patterns are ubiquitous in nature, and research in the past fifty years
have greatly advanced our understanding of the mechanisms through which patterns
can originate. The objective of this paper is to review the derivation of models for
pattern formation, and the characterization of systems that will develop temporally
stable spatial patterns. Special emphasis is made on Turing instabilities, which are the
most commonly discussed mechanisms for pattern formation. However, even though
the presence of Turing instabilities will be sufficient for pattern formation, there are
other types of instabilities that will lead to spatial heterogeneity. In these cases, it
is shown that techniques from boundary-layer asymptotic analysis can help study the
spatiotemporal dynamics of these non-Turing patterns.

This paper is part of a larger project whose objective was to communicate mathematics to a broader
audience. The website that accompanies the paper won first prize in the DSWeb2013 Contest for
Teaching Dynamical Systems from the Society for Industrial and Applied Mathematics.
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1. Introduction

Pattern formation in nature is a complex process. Just think about the intricate

structure of snowflakes, the complex patterning of animal coats, or the geometric designs

on seashells. There are even microscopic patterns like the patterns in the connectivity of

neurons in the visual cortex in the brain. In spite of their complexity and wide variety,

the abundance of patterns in nature suggests that there may be a set of simple principles

that govern pattern formation in general. In the past fifty years, researchers have become

increasingly interested in understanding the mechanisms of biological pattern formation,

and this field has become fertile ground for collaborations between experimental groups

and applied mathematicians.

Our understanding of the mathematical principles of pattern formation has been his-

torically linked to research in developmental biology, which deals with one of the most

interesting “patterns” in nature: the development of form and structure of developing

organisms. The great diversity in body shapes found across the animal kingdom in-

trigued many researchers. However, the morphological study of organisms shifted away

from the evolutionary changes that give rise to the diversity of body traits across species

to the developmental processes that allow complex multicellular organisms to arise from

single fertilized eggs.

A move towards a more mechanistic and mathematical approach was catalyzed by

D’Arcy Thompson’s influential book On Growth and Form D’Arcy (1992). D’Arcy

highlighted the importance of physical laws and first principles that underlie morpho-

genesis. Even though his approach was theoretical, and he did not provide any experi-

mental data supporting his mechanistic explanations of phenomena in nature, his book

shifted the foci of research away from evolution and towards the principles underlying

morphogenesis.

One of the great breakthroughs in the field was Alan Turing’s paper in 1952, “The

chemical basis of morphogenesis” Turing (1952). In this paper, Turing proposed that

pattern formation could be understood using a simple system of reaction-diffusion equa-

tions representing interacting chemicals. More importantly, the paper suggested that

patterns could originate due to the interactions of otherwise stabilizing processes Cooper

and Maini (2012). Since then, a lot of experimental and theoretical research has been

done to study pattern formation in different contexts, and while some systems will have

non-Turing patterns, the intuition and the main components of most models can be

traced back to Turing’s seminal idea.
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1.1. Structure of the paper and the certificate project. The goal of this project

was to provide a series of multimedia web resources that could supplement a course in

dynamical systems. Motivated by several courses at Princeton and Oxford universities,

I sought to create a visual guide to the mathematics of pattern formation. The vi-

sual nature of the mathematics lent itself to being understood through a series of short

movies, animations, audio clips, and illustrations. This paper supplements the videos

and website and provides a more complete account of the mathematics of pattern for-

mation.

We begin in §2 by demonstrating how the reaction-diffusion partial differential equa-

tion can be derived through a variety of approaches in mathematical modeling. This is

continued in §3 where we study a particular type of instability, first proposed by Alan

Turing, where small perturbations away from the steady state will drive the system to

acquire a temporally stable and spatially heterogeneous profile. In §4 we review the

numerical methods that are used to simulate reaction-diffusion equations, and their

MATLAB implementation. Finally, we end with a discussion of boundary-layer as-

ymptotic analyses of reaction-diffusion equations in §5, and show that for some systems

the patterns observed in numerical simulations will not be Turing patterns.
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2. Reaction-Diffusion Equations

In this section, we introduce a class of partial differential equations known as Reaction-

Diffusion Equations, which are frequently used in modeling and describe the diffusion

(spreading out) and reaction of one or several chemical species.

In the simplest one-dimensional case, let upx, tq be the concentration of some chemical

positioned on the real line on x at time t. Then, the reaction-diffusion equation has the

form:
Bu

Bt
“ Du

B2u

Bx2
` fpuq, (2.1)

where Du is a coefficient associated with the diffusive properties of u, and fpuq is a

function that describes how u grows or decays depending on its current concentration.

To understand why these relatively simple equations were first proposed to describe

pattern formation and the intuition behind why they present spatial patterns, we present

the derivation of the reactive, f , and the diffusive, Duuxx, terms.

2.1. Reactions. A “reaction” often refers to an interaction of some sort between two

or more objects, and this is often the case. But in Equation (2.1), what is the lone

chemical (whose concentration is u) reacting with? In some sense, a one-dimensional

reaction means that the chemical is reacting with zero and is either making more of

itself or decaying. A simple example of a decaying reaction corresponds to fpuq “ ´u,

and leads to the system,
du

dt
“ ´u, (2.2)

which has many applications including radioactive decay, and protein degradation. As

a result, a more precise interpretation of the reactive term, fpuq, is that it describes the

change in concentration of u depending on its local value.

It follows that the reactive term ~fpuq for more than one chemical species will describe

the local changes in concentrations that are due to the production and decay of each

chemical in addition to the interactions between chemicals. Some examples of such

reactions are chemical reactions, and population dynamics where two or more species

are competing for resources.

2.1.1. An example of a reaction system. Imagine that there is an isolated ecosystem that

only contains two species. One species feeds on the vegetation found in the ecosystem,

and the second species is a predator that will feed on the first species. In this system, the

reactions will be the birth and death rates of each species, and the rate of predation. The

most famous predator-prey system is the Lotka-Volterra model Lotka (1925). Letting
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U be the number of prey and V be the number of the predator, his model was,

dU

dt
“ a1U ´ a2UV, (2.3a)

dV

dt
“ a3UV ´ a4V, (2.3b)

where ai, i P t1, 2, 3, 4u are growth and decay constants.

We describe the role of each of the terms in (2.3). The a1U term indicates that the

prey population will grow with rate a1 (i.e. the rate of reproduction will be proportional

to the current population size). The ´a2UV term corresponds to a decrease in prey

population due to predation which has rate a2. The a3UV term indicates that if the

predators have food, then they will reproduce. And finally, the ´a4V term indicates

that if the predators do not have food, the predator population will decrease.

It is useful to work with a non-dimensionalised version of the Volterra equations (2.3).

Letting,

upτq “
a3Uptq

a4
, vpτq “

a2V

a1
, τ “ a1t, a “

a4
a1
, (2.4)

we get,

du

dτ
“ u´ uv, (2.5a)

dv

dτ
“ apuv ´ vq. (2.5b)

The evolution of the two (non-dimensionalized) populations over time are shown in

Figure 1. The prey population u is graphed on the x-axis and the predator population

v is graphed on the y-axis. At a given point pu, vq, the arrows in phase space will point

in the direction of,
dv

du
“ a

uv ´ v

u´ uv
, (2.6)

We can solve (2.6) exactly to get,

au` v ´ logpuavq “ H, (2.7)

where H is constant. Thus, u can be solved as a function of v using special functions

(in particular, the Lambert W function). It can be shown that for H ą 1 ` a, then

we will obtain closed trajectories Murray (2003). Closed trajectories tell us that the

populations of u and v will wax and wane over time, but always return to their original

state pup0q, vp0qq.

The set of equations (2.5) has fixed points at p0, 0q and p1, 1q. Linearizing about

p0, 0q, we find that the origin is a saddle. In addition, p1, 1q is neutrally stable, and the
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Figure 1. The Lotka Volterra model. The top panel shows the time
evolution of both the predator and prey populations. The bottom panel
shows the changes in prey population u in terms of the changes predator
population v, and the black arrows point in the direction of dv{du.

solution of the linearised equations about p1, 1q has the form,
ˆ

ũpτq

ṽpτq

˙

“ ~m1e
i
?
aτ
` ~m2e

´i
?
aτ , (2.8)

where ũ and ṽ are small perturbations away from p1, 1q, and ~m1 and ~m2 are the eigen-

vectors. This solution provides the trajectories illustrated in Figure 1.

2.2. Diffusion. The word diffusion comes from the Latin diffundere meaning “to pour

out” def (2014). Long before it was used to describe a physical phenomenon, ”diffu-

sion” was used to describe the dissemination of knowledge, branching out, and a general

abstract concept of spreading out. It was not until the 1800s that the term diffusion

was used in physics to describe how particles of gases, liquids, and solids intermingle
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and move from areas of high concentration to low concentration without chemical com-

bination as a result of each particle’s kinetic energy. Adolf Fick described diffusion

mathematically, and arrived at this result using a macroscopic approach. In fact, the

diffusion equation
Bc

Bt
“ D

B2c

Bx2
, (2.9)

is also known as Fick’s second law Mehrer and Stolwijk (2009).

There are two well-known approaches to deriving (2.9): we can either derive the

transport of species concentration macroscopically, or we can derive the dynamics using

stochastic, Brownian motion.

2.2.1. The macroscopic approach. Let cpx, tq be the concentration of a chemical, and

qpx, tq be its flux. Remember that the flux determines how much chemical will flow

through an infinitesimal surface element of area dS with normal n̂ in an infinitesimal

time interval dt. Thus, the local flux is related to,

amount of fluid through dS “ n̂ ¨ qpx, tq dS dt. (2.10)

We also assume that the motion of the chemical is governed by Fick’s First Law of

Diffusion which states that the flux is opposite and proportional to the gradient of the

concentration by,

q “ ´D∇c, (2.11)

where D “ Dpx, tq is the diffusion coefficient and is independent of c and ∇c. (2.11) is an

empirical law that describes how substances will flow from areas of high concentration

to areas of low concentration.

Through conservation of mass we get that for a fixed closed volume V with a bound-

ing surface BV , the change in the total chemical concentration will be the change of

concentration of the chemical inside the volume minus the amount of chemicals flowing

out of V at any given time. This can be written as,

d

dt

ż

V

cdV “ ´

ż

BV

q ¨ n dS. (2.12)

Applying equations (2.10) and (2.11) and the divergence theorem we get that,

d

dt

ż

V

cdV “

ż

V

∇ ¨ qdv (2.13)

“

ż

V

∇ ¨ pD∇cq dV. (2.14)
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Therefore, for any V with surface BV we obtain,
ż

V

"

Bc

Bdt
´∇ ¨ pD∇cq

*

dV “ 0. (2.15)

Since this expression must hold for any arbitrary volume, V , then the integrand must

be zero. Thus,
Bc

Bt
“ ∇ ¨ pD∇cq, (2.16)

This will simplify to (2.9) assuming that D is a constant.

The microscopic approach. At the macroscopic level, we understand diffusion as causing

the substance to spread out according to Fick’s Law (and thus moving from areas of

high concentration to low concentration).

Brownian motion is named after the British botanist Robert Brown. He described “a

peculiar character in the motions of the particles of pollen in water” Brown (1828), and

more importantly he stated that this motion is not due to the particles being alive but

is instead of a mechanical nature. Albert Einstein, half a century later, proposed a first

approximation to Brownian motion from a physical perspective. Einstein’s imagined

a microscopic particle like one of Brown’s pollen particles suspended in liquid. Even

though the pollen particle is microscopic, it is much larger than the water molecules, so

every time it gets ”hit” by the fluid molecules, the particle will move a small amount

or each hit. The hits come at random intervals and from all directions Einstein (1956);

Nelson (1967). If there are several pollen particles, concentrated in a region of the

liquid, random collisions with water molecules will tend to make them spread out, and

this is analogous to the ‘spreading out’ effect of diffusion.

For simplicity, we consider a one-dimensional lattice, where, at point x “ 0,˘h, . . .,

we define the concentration, cpx, tq, as the expected number of particles in position x at

time t. The generalization to three-dimensional diffusion is straightforward.

Let us assume first that after some time t “ t ` τ , each particle moves right or left

with equal probability p{2, or stays in the same place with probability 1´ p. The case

where p “ 1 is illustrated in Figure 2. The expected concentration at the next point is:

cpx, t` τq “
p

2
cpx´ h, tq `

p

2
cpx` h, tq ` p1´ pqcpx, tq (2.17)

We now want to generalize from the random walk to the one-dimensional diffusion

equations by taking a continuum limit as hÑ 0 and as τ Ñ 0. We subtract cpx, tq from

both sides of (2.17) to get,

cpx, t` τq ´ cpx, tq “
p

2
rcpx´ h, tq ` cpx` h, tq ´ 2cpx, tqs. (2.18)
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Figure 2. Random Walk. This figure illustrates a cartoon schematic
of random walks along a one-dimensional lattice in the case where particles
move right and left with equal probability.

The left hand-side of this equation corresponds to τBc{Bt as τ goes to 0, and the right

hand-side corresponds to h2B2c{Bx2 as the discretization of space becomes infinite, i.e.

h goes to 0. Thus, we are left with,

Bcpx, tq

Bt
“ D

B2cpx, tq

Bx2
(2.19)

where D is the diffusion constant, and it describes how fast a substance spreads and it

takes the form,

D “
h2

2τ
(2.20)

In Figure 3, we provide an example of the stochastic movement of N “ 10 particles,

that is, at each step in time, dt “ .01, a random number generator is used to determine

whether each of the particles moves left or right.

We can compare with the exact solution of the diffusion equation, which is given by,

cpx, tq “
A

?
4πDt

exp

„

´
x2

4Dt



. (2.21)

The microscopic random walk approximation will be similar to the analytical solution

as is shown in Figure 4, where the (2.21) is plotted on top of the distribution of N balls

that started at the origin, whose motion was Brownian, and whose final position was

binned and plotted as a histogram.

2.3. A combination of reaction and diffusion. One of the key questions when

studying mathematical models of natural phenomena is where the model came from.

Since the goal is to use the mathematical model to understand the principles underlying

the phenomenon of interest, it is imperative that the model have a direct relationship
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Figure 3. Diffusing particles. This figure shows the path of ten par-
ticles that were started at the origin. At each time step of size dt “ .01
minutes, the particles will move right or left by dx “ 1 with equal proba-
bility. The simulation is run for one minute and the path of each particle
is plotted in the particle’s color.

with the system it is modeling. It is thus important to ask why reaction-diffusion models

were proposed for pattern formation in the first place.

To understand why reaction-diffusion systems were proposed, we must recall that a

lot of the mathematics of pattern formation was developed in the context of develop-

ment. Alan Turing among other key contributors, were interested in how multicellular

organisms could arise from a single cell. One natural question was how embryonic

cells differentiated into different cell types that would later form the tissue for different

organs. It was posited that chemical gradients throughout the embryo could be one

mechanism through which spatial heterogeneity could be achieved. This chemical con-

centration profile can then influence gene transcription and drive cells to differentiate

into different tissue types, which will eventually form the different organs in the body

Maini et al. (2012).

The mechanism through which these gradients were set up, however, was not imme-

diately apparent. For a long time, diffusive models had been disregarded because they
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Figure 4. Comparing the heat equation and Brownian motion.
This figure shows the solution to the diffusion equation, or the heat equa-
tion, in red. To obtain the teal histogram, 2000 balls with Brownian
motion were simulated for 600 time steps. As a result, each bar repre-
sents the number of balls whose final position was in that bin.

were assumed to be too slow to establish a stable chemical gradient but this changed

in 1970 when Francis Crick modeled diffusion in a one-dimensional embryo and showed

that diffusion is sufficiently fast in small domains Crick (1970).

Crick’s model was,
BCpx, tq

Bt
“ D

B2Cpx, tq

Bx2
, (2.22)

where Cpx, tq is the concentration of the chemical at position x and time t. Furthermore,

he set the boundary conditions on the 1D embryo of length L to be Cp0, tq “ C0 and

CpL, tq “ 0.

Crick wanted a stable gradient (in time), so he set the left hand side of (2.22) equal

to zero. This system has the form:

B2Cpx, tq

Bx2
“ 0, (2.23)

and its solution is a straight line.
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Finally Crick calculated how much time it would take to reach this stable concentra-

tion gradient. From (2.20) we see that the diffusion constant has units rlength2
{times.

Thus, the time it takes to set up the gradient is,

t “ A
pnlq2

D
, (2.24)

where t is time in seconds, n is the number of cells in the embryo, l is length of each

cell in cm, D is the diffusion constant in cm2s´1, and A is a numerical constant that is

fit from the data. Assuming that the time it takes a real embryo to set up the chemical

gradient is around three hours, Crick found that diffusion would be fast enough if L was

on the order of millimeters, which is the case in fruit flies, which is the animal model

used to study this phenomena.

Crick did not have the technology to measure the concentration gradients of any

chemicals in the fruit fly embryos, so this was the extent of his analysis. New imaging

technologies have been developed that allow scientists to measure the concentration of

chemicals in embryos. One very important chemical is called bicoid and it is important

in establishing an asymmetry in the anterior-posterior axis (i.e. it determines what

cells become part of the head and which ones become part of the body) Little et al.

(2011). The bicoid gradient does not look linear, and can be better approximated by

an exponential curve.

This suggests that the diffusive model alone does not fully explain how chemical

gradients are established in the embryo. Thus, models of bicoid usually introduce a

reaction term that describes how bicoid is produced and how it degrades as it diffuses

across the embryo. This model according to Little et al. (2011) has the following form:

BCpx, tq

Bt
“ Dptq

B2Cpx, tq

Bx2
´

1

τ
Cpx, tq ` ρpx, tq, (2.25)

where D is the diffusion constant, τ is the degradation rate, and ρ is a synthesis rate.

Consider a simpler version of (2.25),

BCpx, tq

Bt
“ D

B2Cpx, tq

Bx2
´

1

τ
Cpx, tq, (2.26)

which we can solve for a stable gradient analytically,

Cpx, tq “ C0e
´x{λ, λ “

?
Dτ (2.27)

This example shows why sometimes reaction and diffusion are needed to make realistic

biological models. Diffusion can model spatial phenomena, but often, like in the case of



THE MATHEMATICS OF PATTERNS 15

bicoid, we have local reactions that can only be included in the model with equations

like the Reaction-Diffusion PDE in (2.25).

2.4. Reaction-Diffusion equations and spatial domains. So far it has been shown

that diffusion is very effective in short distances how reaction and diffusion can work

together to model experimental data. However, to really understand pattern formation,

it is necessary to study the spatial properties of reaction-diffusion equations.

Following Kierstead and Slobodkin (1953), we consider the survival of a phytoplank-

ton population in a body of water. Assume that the phytoplankton can only survive

in waters with adequate conditions, and that these regions of water are surrounded

by bodies of water where the phytoplankton will die. We ask whether there exists a

minimum water mass size where the phytoplankton population will survive?

In the ocean, this water mass would be three-dimensional, but let us take a simpler

one-dimensional approach in which we consider a mass of water that has been stretched

out into a very thin tube. We impose boundary conditions on the concentration of

phytoplankton c such that any phytoplankton at the edges are automatically destroyed,

and also that the concentration is constant at t “ 0. That is, we have the following

initial and boundary conditions:

cp0, tq “0 “ cpL, tq (2.28a)

cpx, 0q “ c0. (2.28b)

Furthermore, assume that the phytoplankton cannot swim so their movement is gov-

erned by diffusion. . Therefore, if the phytoplankton population does not grow or

decrease, its concentration will be the solution to the diffusion equation which has the

form:
Bc

Bt
“ D

B2c

Bx2
. (2.29)

However, since phytoplankton are living organisms, we add a reactive term that

describes the population growth of the phytoplankton so that Equation (2.29) becomes,

Bc

Bt
“ D

B2c

Bx2
`Kc, (2.30)

where K is a growth constant.

Before we solve this using separation of variables, we can simplify our problem by

scaling out the diffusion-less exponential growth,

cpx, tq “ fpx, tqeKt, (2.31)
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and substituting Equation (2.31) into Equation (2.30), we find that f must satisfy the

standard diffusion (or heat) equation of the previous part,

Bf

Bt
“ D

B2f

Bx2
. (2.32)

By the standard techniques of Fourier series, and using the boundary conditions of c “ 0

at x “ 0, L, we get that,

f “
8
ÿ

n“1

Bn sin
´nπx

L

¯

e´n
2π2D{L2t, (2.33)

where Bn are the Fourier sine coefficients given by,

Bn “
2

L

ż L

0

c0 sin
´nπx

L

¯

dx, (2.34)

for n “ 1, 2, . . ., which are then computed for given initial concentration, c0.

Substituting (2.32) into (2.31) we get the concentration,

cpx, tq “
8
ÿ

n“1

Bn sin
´nπx

L

¯

epK´n
2π2D{L2qt. (2.35)

2.4.1. What will be the steady state of the phytoplankton population? They key is to

note that in (2.35) that because the Fourier coefficients are bounded and decreasing as

n Ñ 8, and the sinusoidals are well behaved, the long term behavior of the system

will be controlled by the time term in Equation (2.35), epK´n
2π2D{L2qt. In particular,

the argument, K ´ n2π2D{L2, will determine whether the population of plankton will

grow, stay the same or decay. In particular, if it is exactly zero, the population will be

at equilibrium, if the argument is negative, the population will decay over time, and if

it is positive, then the population will grow over time.

Moreover, if these conditions hold for the n “ 1 mode, then the higher modes don’t

change the steady-state behavior. For n “ 1, the bifurcation, or the point at which the

behavior changes from decay to growth, is found at the length, L such that K´π2 D
L2 “ 0.

Therefore, we can get a critical length of the form:

Lc “ π

c

D

K
. (2.36)

In summary, we have found the critical length of the domain such that for L “ Lc, the

population stays constant, for L ą Lc, the population increases and for L ă Lc the

population will decay.
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As a final note, observe that the critical length increases proportional to D but in-

versely proportional to K. This suggests that the steady-state behavior of the plankton

population is determined by the relative strength of the diffusive and reactive terms in

Equation (2.30). When L ą Lc then the reactive term Kc will dominate the long-term

behavior, but when L ă Lc the diffusive term D B2c
Bx2

dominates. When L “ Lc the dif-

fusive and reactive forces balance each other equally. (For a more complete discussion

on the minimum domains for spatial patterns refer to Murray and Sperb (1983)).
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3. Turing instabilities

In 1952, Turing published a paper titled The chemical basis of morphogenesis Turing

(1952), where he proposed a reaction-diffusion model for pattern formation, in which

diffusion was the source of the instability that caused patterns to form. This is coun-

terintuitive, because so far we have studied diffusion as a stabilizing force. However, we

will see that the key is that this instability comes from the interaction of the reactive

and diffusive terms that govern interacting chemical species that are diffusing within

some spatial domain.

3.1. Diffusion-driven instabilities. Consider the system of equations:

Bu

Bt
“ Du

B2u

Bx2
` fpu, vq, (3.1a)

Bv

Bt
“ Dv

B2v

Bx2
` gpu, vq. (3.1b)

where Du and Dv are diffusion constants, u and v represent the concentration of two

chemical substances and are functions of position and time up~x, tq, vp~x, tq, and fpu, vq

and gpu, vq describe how u and v interact.

We introduce a couple of definitions:

Definition 1: Patterns are stable, time-independent, spatially heterogeneous solutions

of (3.1).

Definition 2: A diffusion-driven instability, or Turing instability, occurs when a steady

state, stable in the absence of diffusion, becomes unstable when diffusion is present.

Conditions for Turing Instabilities. In this section we derive the conditions needed to

obtain (i) stability in the zero-diffusion case so that if the chemicals are not diffusing,

or they diffuse at the same rate, they will tend to go to an equilibrium state, and (ii)

instability when diffusion is added such that a small perturbation away from equilibrium

will lead to a (drastic) change in the spatial structure and patterns will form.

We assume a stationary uniform state pu0, v0q exists (i.e. fpu0, v0q “ gpu0, v0q “ 0).

Let upx, tq “ u0 ` ũ and vpx, tq “ v0 ` ṽ, where ũ and ṽ are small. We can taylor

expand about the fixed points to get,

fpu, vq “ fpu0, v0q ` ũ
Bfpu0, v0q

Bu
` ṽ

Bfpu0, v0q

Bv
` ... (3.2a)

gpu, vq “ gpu0, v0q ` ũ
Bgpu0, v0q

Bu
` ṽ

Bgpu0, v0q

Bv
` ..., (3.2b)
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so when we linearize (3.1) about pu0, v0q we get,

Bũ

Bt
“ fu ` fv `Du

B2ũ

Bx2
` ... (3.3a)

Bṽ

Bt
“ gu ` gv `Dv

B2ṽ

Bx2
` .... (3.3b)

For simplicity we can rewrite this in matrix notation as,

B

Bt

ˆ

ũ

ṽ

˙

“

ˆ

D
B

Bx2
` J1

˙ˆ

ũ

ṽ

˙

, (3.4)

where,

J1 “

˜

fu fv

gu gv

¸

, (3.5)

and,

D “

˜

Du 0

0 Dv

¸

. (3.6)

When diffusion is absent, we want our system to be stable. What needs to hold in order

for this to be true? The diffusion-less linearized system has the following form:

B

Bt

ˆ

ũ

ṽ

˙

“

˜

fu fv

gu gv

¸

ˆ

δu

δv

˙

. (3.7)

In seeking diffusion-driven instabilities (see Definition 2), we are thus looking for steady-

state solutions which are asymptotically stable. This requires Repλ1,2q ă 0, where λ1,2

are the eigenvalues of J1.

Recall from linear algebra that in a 2ˆ2 matrix, the trace of the Jacobian τ “ λ1`λ2

and the determinant ∆ “ λ1 ¨ λ2. Taken together with the fact that Repλ1,2q ă 0, we

get the following two conditions for the stability of (3.7):

τ “ fu ` gv ă 0, (3.8a)

∆ “ fugv ´ fvgu ą 0. (3.8b)

Now, according to Def. 1, patterns are time-independent and spatially heterogeneous

solutions for (3.1). We assume that the solution is separable, so set:

δũpx, tq “ Aptqeiqx, and (3.9a)

δṽpx, tq “ Bptqeiqx, (3.9b)

where each q is the wave-number of a Fourier mode.
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Then, the diffusion terms become:

Du
B2

Bx2
Aptqeiqx “ ´q2DuAptqe

iqx, (3.10a)

Dv
B2

Bx2
Bptqeiqx “ ´q2DvBptqe

iqx, (3.10b)

After we perturb the system by find that the Jacobian for this system is:

B

Bt

ˆ

δũ

δṽ

˙

“

˜

fu ´ q
2Du fv

gu gv ´ q
2Dv

¸

ˆ

δũ

δṽ

˙

(3.11)

Equation (3.11) will be unstable when at least one of the two conditions below is

true,

τ “ fu ` gv ´ q
2
pDu `Dvq ą 0, (3.12)

∆ “ pfu ´ q
2Duqpgv ´ q

2Dvq ´ fvgu ă 0. (3.13)

Notice that the first condition (3.12) will never be satisfied since Du, Dv P R` and by

(3.8a). Thus, if we want the system to become unstable we need (3.13) to be true.

We look for q ą qmin where qmin is the first mode that can cause an instability, i.e.

satisfy,

Hpq2q “ pfu ´ q
2Duqpgv ´ q

2Dvq ´ fvgu ă 0. (3.14)

Notice that (3.14) is a quadratic with respect to q2, so

q2min “
Dugv `Dvfu

2DuDv

, (3.15)

and if we look at where the determinant of the quadratic is positive, we find that:

Dugv `Dvfu ą 2
a

DuDvpfugv ´ gufvq (3.16)

This may seem a bit too abstract, so in the next section of the notes we will go

through an Activator-Inhibitor model known as the Gierer-Meinhardt model.

The previous section derived the conditions that are needed for a Turing instability

to exist. Now, let us step through an example in order to see how this works in practice.

3.2. The Gierer-Meinhardt model. We consider the Gierer-Meinhardt model, which

is a reaction diffusion system that describes an activator-inhibitor interaction which is

illustrated in Figure 5.
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A simplified form of the original Gierer-Meinhardt model Gierer and Meinhardt (1972)

is,

Bu

Bt
“
u2

v
´ bu`Du

B2u

Bx2
, (3.17a)

Bv

Bt
“ u2 ´ v `Dv

B2v

Bx2
. (3.17b)

where we will call u our “activator” and v our “inhibitor”, Du and Dv are diffusion

constants, and b is the rate at which the activator u will naturally degrade.

3.2.1. Stability without Diffusion. We can picture the diffusionless case of this system

as the following picture, where the terms in the equation corresponding to the given

connection are written in green:

Figure 5. Gierer-Meinhardt model. This figure shows a schematic
of the Gierer-Meinhardt reaction where the activator is shown in blue and
the inhibitory is shown in red, and the black arrows show the interaction
between the two chemicals and their decay.

Since the diffusion-less model looks like,

Bu

Bt
“
u2

v
´ bu, (3.18a)

Bh

Bt
“ u2 ´ v, (3.18b)

We see that the steady state is given by u0 “ 1{b and v0 “ u20 “ 1{b2. Linearizing

about the steady state ru0, v0s “ r1{b, 1{b
2s, we find that the Jacobian is,
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J |
p1{b,1{b2q “

˜

´b` 2u
v
´u2

v2

2u ´1

¸
ˇ

ˇ

ˇ

ˇ

ˇ

p1{b,1{b2q

“

˜

b ´b2

2
b
´1

¸

. (3.19)

Now, it is possible to find the parameter values that will make this a stable equilibria

by setting (i) trpJq “ b ´ 1 ă 0 ñ b ă 1, and (ii) detpJq “ b ą 0 ñ b ą 0. Therefore

0 ă b ă 1.

Instability with diffusion. When we add diffusion to the system we want it to be un-

stable. In order to study this we add a small perturbation away from the steady state

and find the parameter values that will make these small perturbations grow over time.

Let upx, tq “ u0 ` ũ and vpx, tq “ v0 ` ṽ, with ũ and ṽ very small. The linearized

system is then used to study Bũ
Bt

and Bṽ
Bt

.

The linearized system has the form,

Bũ

Bt
“ bũ´ b2ṽ `Du

B2ũ

Bx2
, (3.20a)

Bṽ

Bt
“

2

b
ũ´ ṽ `Dv

B2ṽ

Bx2
. (3.20b)

The system can be solved by separation of variables as we saw in the previous example,

so we look for solutions of the form,
ˆ

ũ

ṽ

˙

“

ˆ

Aptqeiqx

Bptqeiqx

˙

, (3.21)

where q are the Fourier modes.

The system becomes,

B

Bt

ˆ

δũ

δṽ

˙

“

˜

b´ q2Du ´b2

2{b ´1´ q2Dv

¸

ˆ

δũ

δṽ

˙

(3.22)

We want to find the eigenvalues λ1,2 of the 2 ˆ 2 matrix, and we want them to be

distinct, and at least one of Repλiq ą 0, i P t1, 2u. Thus, we need,

detpJq “ Hpq2q “ pb´Duq
2
qp´1´Dvq

2
q ` 2b ă 0 (3.23)

Notice that the determinant is a quadratic function with respect to q2, and depending

on the value of b it will have zero, one or two real roots. It can be thus seen that we

will only get patterns when there quadratic has real silutions.

We will get two real roots for the quadratic when,

´ bDv `Du ą 2
a

pDuDvqb. (3.24)
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Figure 6. Spatial dependence on patterns. This figure shows two
simulations of the Gierer-Meinhardt system with periodic boundary con-
ditions. The only difference between the two simulations is the spatial
domain, and it can be seen that whether or not the system develops spa-
tial patterns depends on the domain.

3.2.2. Spatial Domain. If periodic boundary conditions are applied on a domain x P

r0, Ls, the separable solution will then be of the form
ÿ

k

Ake
λpq2qt cospqxq, (3.25)

for

q “
nπ

L
, n P t1, 2, ...u. (3.26)

Since we want patterns to form, then the smallest allowed L has to be such that

q2 “
π2

L2
ą
A`

?
A2 ´B

2DuDv

“ q2`, (3.27)

where A “ bDv ´Du, B “ 4bDuDv, and q2` is the bigger of the two solutions of Hpq2q.

In other words, our critical length will be Lc “
π
q`

. The dependence on the spatial

domain is illustrated by Figure 6.
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3.3. Turing Instabilities and Tiger Stripes. The systems that we have considered

so far are all one-dimensional, but it is not difficult to extend our analysis to two

dimensions. In this section we talk of systems that seek to understand the mechanisms

through which coat patterns are formed. To do this, we begin by revisiting the spatial

dependence of patterns with a 2D Gierer Meinhardt model.

Keeping all parameters the same except for the width of the domain, Figure 7 shows

that we obtain stripes on a thin domain with periodic boundary conditions, and spots on

the square domain. Recall from the previous section that there was a minimum domain

size for the Gierer Meinhardt system to have patterns. In the thin domain, the short

edge is not long enough for patterns to form, so we only get patterns in one direction

which look like stripes. On the other hand, in the square domain, we get patterns in

both directions which results in spots with the parameters used.

This phenomenon was then connected to coat patterns in animal tails by J.D. Murray,

who ran simulations of reaction diffusion models on cylindrical domains that tapered off

at the ends. (i.e. on a trapezoidal surface with periodic boundary conditions on the legs

and zero-flux boundary conditions on the bases). He observed that you could get tails

that were either entirely striped or that had spots that became stripes at the tip of the

tail, similar to the markings observed on the tails of different felines ((Murray, 1988),

3.1 in (Murray, 2003)). This phenomenological model is exciting because it suggests

Figure 7. 2D Gierer-Meinhardt system. This figure shows two
simulations of a two-dimensional Gierer-Meinhardt system with periodic
boundary conditions. The thin domain develops stripes and the square
domain form spots.
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that if coat patterns are due to the reaction between two (or more) chemical species, the

same biological mechanism can result in different patterns (e.g. fully striped genet tails

and half-spotted half-striped jaguar tails) due to the different sizes of the tails during

development (Murray, 1981).

3.4. Beyond Turing and stripes. Not all reaction-diffusion systems generate pat-

terns through the same mechanism that was originally proposed by Alan Turing. In

addition, small changes in parameters other than just the spatial domain can lead to

very different patterns. For example, a very famous system of reaction diffusion equa-

tions are the Gray-Scott (GS) equations, which simulate an activator-substrate system;

the reaction can be written as:

u` 2v Ñ 3v, (3.28a)

v Ñ p. (3.28b)

Unlike the Gierer-Meinhardt model which had one chemical acting as an activator,

and the other chemical as an inhibitor, the GS system has two chemicals u and v, where

v is transformed to an inert product (or substrate) p, and u and v react together to

produce more v.

The evolution of the concentration of u and v are described by,

Bu

Bt
“ Du

B2u

Bx2
´ uv2 ` F p1´ uq, (3.29a)

Bv

Bt
“ Dv

B2v

Bx2
` uv2 ´ pF ` cqv. (3.29b)

where Du, Dv are the diffusion constants as usual, and F , c are constants.

Simulations of the Gray-Scott equations can lead to very different patterns using

slightly different parameters as shown below. (c.f. Munafo (1998)).

Note that the Gray-Scott equations lead to much more complicated dynamics than

the Turing systems, and the patterns that you see are due to the nonlinear interactions

between u and v.
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4. Numerical solutions of reaction-diffusion equations

Numerical simulations are very useful to understand the behavior of reaction diffusion

equations. This section will review some of the key numerical techniques that are used

to simulate partial differential equations. The

4.1. The Heat Equation. Recall that the Heat equation (also the diffusion equation)

is:
Bu

Bt
´ Du

B2u

Bx2
“ 0, (4.1)

where u is temperature, and Du is a constant that determines how fast heat spreads out.

Before we go into the numerics let us step through the solution to the heat equation.

Imagine we have an insulated rod with initial condition upx, 0q “ u0 boundary con-

ditions upx, tq “ upL, tq “ 0. We want to solve the PDE in Equation [4.1]. We assume

that the solutions are separable, so

upx, tq “ T ptqXpxq (4.2)

We can substitute this solution into Equation [4.1] to get

T 1ptqXpxq “ DuT ptqX
2
pxq, (4.3)

where the LHS is ut and the RHS is uxx. Rearranging terms we get,

T 1ptq

DuT ptq
“
X2pxq

Xpxq
. (4.4)

Note that the LHS (left hand side) is a function of time where the RHS (right hand

side) is a function of position. In order for this equality to be satisfied for all x and t,

we must have that they are both equal to a constant. We let

T 1ptq

DuT ptq
“
X2pxq

Xpxq
“ ´λ2, λ ą 0. (4.5)

Solving for each variable we get that ,

T ptq “ Ae´λ
2Dut (4.6)

Xpxq “ B cospλxq ` C sinpλxq, (4.7)

where A is a positive real constant. We can apply our boundary conditions to find what

B and C should be. Since the edges at x “ 0 is clamped at zero (up0, tq “ 0), then

B “ 0. The rod is also clamped at zero at x “ L, and since C ‰ 0, then sinpλLq “ 0

This means that λn “
nπ
L

where n P Z. Note that (i) n “ 0 will give a trivial solution,
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and (ii) n P Z´ just makes all the coefficients negative, so we can just consider the

positive values of n without loss of generality.

As a result, we get the following eigenfunctions,

unpx, tq “ Ane
´λ2nDutsinpλnxq, n “ 1, 2, ..., (4.8)

with eigenvalues

λn “
nπ

L
(4.9)

Next, it is necessary to satisfy the initial conditions. Since linear combinations of

solutions will still be solutions, then,

upx, tq “
8
ÿ

n“1

Ane
´λ2nDutsinpλnxq, (4.10)

is still a solution. We would like it then, if we could express u0 as a sum of sine functions

as shown in Equation [4.10]. This is true for most u0 and it is the theory of Fourier

Series. It can be shown that the Fourier sine coefficients are,

An “
2

L

ż L

0

u0pxqsinpλnxqdx (4.11)

However, in general, it is not always easy to obtain solutions to PDE’s in closed form,

and arguably even Equation (4.9) is not as easy to understand (unless you can visualize

an infinite sum!). Instead, we turn to numerical simulations to Partial Differential

equations. One of the methods used is known as the finite-difference method. (For a

more complete discussion and more MATLAB examples and exercises see (Kharab and

Guenther, 2006)).

4.2. Forward (explicit) method. One of the difficulties when numerically simulating

the heat equation is that (4.1) contains partial derivative in both time and space. We

can approximate the partial derivatives of upx, tq in Eqn. (4.1) as follows:

B2u

Bx2
«
upx`∆x, tq ´ 2upx, tq ` upx´∆x, tq

∆x2
, (4.12a)

Bu

Bt
«
upx, t`∆tq ´ upx, tq

∆t
. (4.12b)

This finite difference method is also known as the Forward-Time Central-Space method,

because at each iteration we approximate the value of u by considering considering the

change in space centered around a point in space x using values at x ˘ ∆x, and the

change in time as in the forward Euler method.
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Let n be the index for the time steps, and m be the index for position. We’ll also use

k “ ∆t and h “ ∆x, and write upm,nq “ unm
Then, he heat equation can be solved numerically by using the following,

1

k

`

un`1m ´ unm
˘

“
1

h2
`

unm´1 ´ 2unm ` u
n
m`1

˘

(4.13a)

un`1m “ unm `
k

h2
`

unm´1 ´ 2unm ` u
n
m`1

˘

(4.13b)

un`1m “
k

h2
unm´1 `

ˆ

1´
2k

h2

˙

unm `
k

h2
unm`1. (4.13c)

Now, let us consider the behavior at the edges of the rod. Let us discretize our rod at

M points, un1 , u
n
2 , ..., u

n
M´1, u

n
M . Notice that (4.13c) will work at every position along

a one-dimensional rod except for the two edges (at u1 and uM), because there are no

values for u0 and uM`1 to approximate the centered finite difference. This requires us to

add boundary conditions, and in this section we consider periodic boundary conditions.

This means that un1 “ unM , so:

un0 “ unM´1, (4.14a)

unM`1 “ un2 (4.14b)

It is convenient to rewrite (4.13c) as a matrix operation,

~un`1 “ B~un, (4.15)

where ~un are the values of u at time n for all values x1, ..., xM , and

B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a b 0 . . . b 0

b a b . . . 0 0

0 b a
. . . 0

0
. . . . . . . . .

...
... b a b

0 b . . . 0 b a

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (4.16)

where a “ 1´ 2k
2 , and b “ k

h2
, and where B is a tridiagonal matrix except at B1,M´1 “

BM,2 “ b that satisfies the boundary conditions.

4.3. Backward (implicit) method. The forward method does not guarantee sta-

bility. As a result, it is often convenient to use Implicit methods, which are stable,

and which will allow you to take larger time steps, even though the ‘accuracy’ of the

simulation will still depend on the size of the time step.
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The idea is the same, but the algorithm is as follows,

1

k

`

un`1m ´ unm
˘

“
1

h2
`

un`1m´1 ´ 2un`1m ` un`1m`1

˘

(4.17a)

unm “ ´
k

h2
un`1m´1 `

ˆ

1`
2k

h2

˙

un`1m ´
k

h2
un`1m`1. (4.17b)

We can write (4.17b) as a product of matrices to get

~un “ B1~un`1, (4.18)

where B1 has the same form as B in (4.13c) but with a “ 1` 2k
h2

and b “ ´ k
h2

Then, at each step we need to solve Equation (4.18) for ~un so:

~un`1 “ B1´1~un (4.19)

4.4. Adding in the reaction term. Let us now see how to update our value of u,

when we are looking at a Reaction-Diffusion system like,

Bu

Bt
“ D

B2u

Bx2
` fpuq. (4.20)

Recall that if we just had,
Bu

Bt
“ fpuq, (4.21)

then we simulate it using the forward Euler method so,

~un`1 “ fp~unq k. (4.22)

where k “ ∆t.

Therefore, for the explicit method, we combine (4.15) and (4.22) to obtain that the

update at each time step is,

~un`1 “ B ~un ` fp~unq k (4.23)

If we use the implicit method for the diffusion, and the explicit method, then we need

to solve

B1 ~un`1 “ ~un ` fp~unq k, (4.24)

for ~un`1. Thus, at each step we need to compute,

~un`1 “ B1´1 p~un ` fp~unq kq. (4.25)
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4.5. MATLAB code examples. The following code is an example of how to use these

methods in MATLAB .

1 %%%%%%%%%%%%%%%%%%%%%%%

2 %%% Screencast code %%%

3 %%%%%%%%%%%%%%%%%%%%%%%

4

5

6 %%% Forward Finite difference method %%%

7

8 % At each time step compute: u(n+1) = B u(n)

9 % How do we create B in MATLAB?

10

11 % Parameters

12 D = 2; % Diffusion constant

13 dx = 0.2; dt = 0.1; % space and time step

14 Nx = 6; % Number of grid points

15

16 % Making the Matrix

17 a = (1-2*D*dt/dxˆ2); % Diagonal values

18 b = D*dt/dxˆ2; % Off-diagonal values

19 main = a*sparse(ones(Nx,1));

20 off = b*sparse(ones(Nx-1,1));

21 B = diag(main) + diag(off,1) + diag(off,-1); % Make B

22 % Apply periodic boundary conditions

23 B(1, end-1) = b;

24 B(end, 2) = b;

25

26

27 % Useful MATLAB functions we used

28 % diag

29 % imagesc

30 % sparse
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The next code will create the plots that were used to make the figures in §3.

1 % The Mathematics of Patterns 2013

2 % Turing Instabilities II: Gierer Meinhardt system in 1D

3

4 % This MATLAB code will show you how to numerically simulate

5 % the 1D Gierer-Meinhardt system, and create a simplified

6 % version of the animations in the Turing Instabilities section.

7 clear all

8 close all

9

10 %%%%%%%%%%%%%%%%%%%%%

11 %%% Set-up %%%

12 %%%%%%%%%%%%%%%%%%%%%

13

14 % Parameter values

15 bc = 0.35;

16 Du = 1; Dv = 30; % Diffusion constants

17

18 % Grid and initial data:

19 % w = 10; %no pattern

20 w = 80; % pattern

21

22 Nx = 500; % How many points we want to discretize our domain with

23 x = linspace(0,w, Nx);

24 dx = x(2) - x(1);

25

26 dt = 1; % size of our time step

27 t = 0:dt:400;

28 Nt = length(t); % Number of time points

29

30 % Set up for the surface

31 [X, T] = meshgrid(x, t);

32 U = 0*X;

33 V = 0*X;

34

35 % Easier to deal with column vectors

36 x = x(:);

37 t = t(:);

38
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39 %Initial conditions: small perturbation away from steady state

40 u = 1/bc*ones(length(x),1) + 0.01*rand(Nx, 1);

41 v = 1/bcˆ2*ones(length(x),1);

42

43 % Save initial conditions

44 U(1,:) = u;

45 V(1,:) = v;

46

47

48 %%%%%%%%%%%%%%%%%%%%%%%%%

49 %%% Making the matrix %%%

50 %%%%%%%%%%%%%%%%%%%%%%%%%

51

52 % To begin, let us recall how to set up the matrices used in the ...

explicit

53 % and implicit finite difference methods.

54

55

56 %%% Forward (explicit) method %%%

57 % We want a tridiagonal matrix (see notes for details)

58 a = (1-2*Du*dt/dxˆ2); % values along the diagonal

59 b = Du*dt/dxˆ2; % values in the off-diagonal

60 main = a*sparse(ones(Nx,1));

61 off = b*sparse(ones(Nx-1,1));

62 Bu = diag(main) + diag(off,1) + diag(off,-1); %Still a sparse matrix

63 % Satisfying boundary conditions

64 Bu(1, end-1) = b;

65 Bu(end, 2) = b;

66

67 % To have a more numerically stable code, we use the implicit method.

68

69 %%% Backward (implicit) method %%%

70 % For u

71 a = (1+2*Du*dt/dxˆ2); % values along the diagonal

72 b = Du*dt/dxˆ2; % values in the off-diagonal

73 main = a*sparse(ones(Nx,1));

74 off = -b*sparse(ones(Nx-1,1));

75 Bu = diag(main) + diag(off,1) + diag(off,-1); %Still a sparse ...

matrix

76 % Satisfying boundary conditions

77 Bu(1, end-1) = -b;
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78 Bu(end, 2) = -b;

79

80 % Same thing for v

81 a = (1+2*Dv*dt/dxˆ2); b = Dv*dt/dxˆ2;

82 main = a*sparse(ones(Nx,1));

83 off = -b*sparse(ones(Nx-1,1));

84 Bv = diag(main) + diag(off,1) + diag(off,-1);

85 Bv(1, end-1) = -b;

86 Bv(end, 2) = -b;

87

88 %%%%%%%%%%%%%%%%%%%%%%%%%

89 %%% Plotting %%%

90 %%%%%%%%%%%%%%%%%%%%%%%%%

91

92 figure(1); %create new figure

93 plot(x,u,'g.-', 'linewidth',1);

94 hold on;

95 plot(x,v,'r.-', 'linewidth',1);

96 hold off;

97

98 axis([-1 80 -.01 15.01]) % Fix axis limits

99

100 for j = 1:Nt

101 % f and g are the reaction terms in the G-M system

102 f = u.ˆ2./v-bc*u;

103 g = u.ˆ2 - v;

104

105 % At each step we need to solve the system

106 u = Bu\(u + dt*f); % backward Euler

107 v = Bv\(v + dt*g);

108

109 % Plot

110 plot(x,u,'g.-', 'linewidth',1);

111 hold on;

112 plot(x,v,'r.-', 'linewidth',1);

113 hold off;

114 axis([-1 80 -.01 15.01])

115 title(['t = ', num2str(j*dt)],'fontsize',24)

116 drawnow;

117

118 % Save for surface
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119 U(j,:) = u;

120 V(j,:) = v;

121 end

122

123

124 %%%% Plotting the surface %%%%

125 figure(2);

126 s = surf(x, t, U)

127 set(s, 'EdgeColor', 'none', 'FaceColor', 'interp');

128 % Sets up the colors

129 xlabel('x')

130 ylabel('t')

131 zlabel('u')

132

133 %%%% contour plot %%%

134 figure(3);

135 p = pcolor(x, t, U);

136 set(p, 'EdgeColor', 'none', 'FaceColor', 'interp');
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5. Asymptotic analysis of localized spots

5.1. Does the story end with Turing Instabilites? The theory for patterns that

we have been developing until now works for systems that, when linearized about the

steady state, turn out to be unstable due to the reactive and diffusive interactions of

two ‘chemical’ species. However, there are systems that can exhibit pattern formation

but that do not satisfy all the conditions for a Turing instability. What is happening in

these systems? Where does our method fail?

Recall from past sections that systems with Turing instabilities only require a small

perturbation away from the steady state to form patterns. But what if patterns will

only form when there is a large perturbation away from the equilibrium state? Our

local analysis will no longer be sufficient to reveal the pattern forming behavior of the

system. So what can we do in these cases?

The reason why most texts on pattern formation stop at Turing instabilities is that

the analysis of these more complicated systems require more advanced mathematics.

One set of mathematical tools that we can use are asymptotic approximations of the

solutions to the system.

5.2. Motivating example. To motivate the use of this method, let us look at the

following example.

ut “ ε2uxx ´ u`
u3

v2
(5.1a)

τvt “ Dvxx ´ v `
1

ε
u3 (5.1b)

ux “ vx “ 0, x “ ˘1. (5.1c)

Here, we have that the activator u diffuses much more slowly than the inhibitor v,

and it is in exactly the same form as the reaction diffusion equations we studied before.

To begin, let’s see whether this system will have Turing instabilities.

Linearizing about its fixed point at (0,0) we get that the Jacobian of the diffusion-less

system is,

«

´1 0

0 ´1

ff

. (5.2)

The trace is negative and the determinant is positive so it is stable with no diffusion.
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However, the third condition for a Turing Instability is that it must satisfy (3.16).

However, when we substitute in the values for our system we get that ´pε2 `Dq ą 0,

but since ε2 ą 0, and D ą 0 this is a contradiction. According to this, we would expect

no patterns to form, but the system does present patterns in the form of localized spots.

5.3. Boundary Layer Analysis. To begin, it is convenient to understand what we

are doing when we linearize. By doing a Taylor expansion and ignoring higher order

terms, our underlying assumption is that most of the behavior of our system will be

captured by the leading order.

So, if we expand,

u “ u0 ` εu1 ` ..., v “ v0 ` εv ` .... (5.3)

we can substitute into our system, and get that at leading order,

u0t “ ´u0 ` u
3
0{v

2
0 (5.4a)

u30 “ 0 (5.4b)

Naively we would say that u0 Ñ 0 and v0 Ñ constant. However, this is only what

happens most of the time. At certain values of x, our naive asymptotic analysis will

break down and this is known as a boundary layer.

The intuitive way to think about what we are going to do next is as follows. For most

values, our naive analysis will be okay, but around certain values, that solution will not

be appropriate. Thus, we want to use our simple solution above as much as possible,

and smoothly ‘stitch’ the solution around the special values of x that better describe

the behavior of the system in the neighborhood of x. Thus, if we posit that there is a

boundary layer around a point x “ x0, we divide our analysis into the inner and outer

parts.

5.3.1. Inner analysis. Near x “ x0, our analysis breaks down because the change in

concentration of the chemical species begins to change very fast. In other words, we

can no longer ignore higher order terms. As a result, we need to re-scale the equation

near x “ x0, and we propose a new variable,

y “
x´ x0
ε

, (5.5)

which is O(1) when x is located Opεq away from x0. For simplicity assume that x0 is

fixed, even though this is not quite the case.
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We propose an inner solution upx, tq “ Upyq, and vpx, tq “ V pyq, where we assume

that the solutions are quasi-steady, so they do not depend on time. The derivatives for

both become:

d

dx
“
dy

dx

d

dy
“

1

ε

d

dy
. (5.6)

This reflects the fact that as we approach x0, the derivatives in x became very large,

so that terms that we originally dismissed as being small because they were scaled by ε

are now large, so we have to take them into account.

We do an asymptotic expansion around the variables in terms of y,

U “ U0 ` εU1 ` ..., V “ V0 ` εV1 ` .... (5.7)

The leading order is now,

0 “ U0yy ´ U0 ` U
3
0 {V

2
0 (5.8a)

0 “ DV0yy (5.8b)

By integrating the second equation twice, we get that V0 “ Ay ` B for constants

A and B. However, our outer solution v0pxq with x Ñ x0 approaches a well-defined

number so we need V0pyq Ñ v0px0q as y Ñ 8. Therefore,

V0pyq “ B “ v0px0q, (5.9)

where we will determine the value of v0px0q in a later section.

First, to determine Upyq, we recall from (5.8a),

0 “ U0yy ´ U0 ` U
3
0 {V

2
0 .

Let U “ V0w, then substituting into the (5.8a), U will become,

w2 ´ w ` w3
“ 0, (5.10)

The solution can be verified to be

wpyq “
?

2sechpyq, (5.11)

since by the boundary conditions we need wpyq Ñ 0 as y Ñ 8 and by assuming

the spike is positive and symmetric, this further constrains the differential equation to

satisfy w1p0q “ 0, w ą 0.
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Therefore, we have that the inner solutions are,

Vinnerpyq „ constant “ v0px0q (5.12a)

Uinnerpyq „
?

2sechpyq “
?

2sech
´x´ x0

ε

¯

(5.12b)

5.3.2. Finding V0. In order to find V0, we propose a uniformly valid solution, meaning

that this solution is valid both away from x “ x0 and near the boundary layer. This

requires us to find the effect of the spike solution on the outer solution.

Recall that in (5.1) the term v3{ε was used to argue that v „ 0. However, this is not

true in the boundary layer. In particular,

1

ε
V 3
0 w

´x´ x0
ε

¯3

Ñ

$

&

%

0 εÑ 0, x ‰ x0

8 εÑ 0, x “ x0.
(5.13)

It can be shown that the spike inner solution with w is a regularization of a delta

function. Thus, we write,

1

ε
V 3
0 w

3
„

1

ε

ˆ
ż 1

´1

V 3
0 w

3 dx

˙

δpx´ x0q “ V 3
0

ˆ
ż 8

´8

w3dy

˙

δpx´ x0q. (5.14)

The outer solution v „ V0 satisfies

DV0xx ´ V0 “ V 3
0

ˆ
ż 8

´8

w3 dx

˙

δpx´ x0q (5.15a)

V0x “ 0 at x “ ˘1. (5.15b)

Therefore, we need to solve

Dv2 ´ v “ C ¨ δpx´ x0q, (5.16)

where C “ V 3
0

`ş8

´8
w3dy

˘

ą 0 Looking at the left hand side we see that we need,

Dv2L ´ vL “ 0 (5.17a)

Dv2R ´ vR “ 0 (5.17b)

Since v1Lp´1q “ v1Rp1q “ 0, we see that the solution will have the form,

vL “ c1cosh

ˆ

x` 1
?
D

˙

, (5.18a)

vR “ c2cosh

ˆ

x´ 1
?
D

˙

. (5.18b)
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Figure 8. Using boundary-layer asymptotic analysis. The figure
shows the spatial profile of the chemical concentrations of the inhibitor
and the activator for ε “ 0.05.

In addition we have the following jump conditions. As xÑ x0, Dv
2 „ ´Cδpx´ x0q,

so Dv1

sim ´ cHpx ´ x0q where Hpxq is the heaviside equation. It follows that the jump

condition will be rv1s`´ “ ´C{D.

Note that since,

Dv „ ´C

ż x

Hps´ x0qds, (5.19)

is continuous, then v will be continuous at x “ x0.

Therefore, we solve

VLpx0q “ VRpx0q (5.20a)

V 1Rpx0q ´ V
1
Lpx0q “ ´C{D “

V 3
0

`ş8

´8
w3dy

˘

D
. (5.20b)
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The solution of this equation can be verified to be,

vLpxq “ A C cosh

ˆ

x` 1
?
D

˙

(5.21a)

vRpxq “ B C cosh

ˆ

x´ 1
?
D

˙

(5.21b)

A “
cosh

´

x0´1?
D

¯

csch
´

2?
D

¯

?
D

(5.21c)

B “
cosh

´

x0`1?
D

¯

csch
´

2?
D

¯

?
D

. (5.21d)

The solution is plotted in Figure 8.

5.4. Studying the dynamics of spikes. So far the analysis has focused on the case

where the boundary layer is time-independent. However, if we suppose instead that

x0 “ x0pε
αtq where α P Z`, such that

y “
x´ x0pε

αtq

ε
(5.22)

Then,

B

Bx
Ñ

1

ε

B

By
(5.23a)

B

Bt

ˇ

ˇ

ˇ

ˇ

x

“
B

Bt

ˇ

ˇ

ˇ

ˇ

y

`
By

Bt

B

By
(5.23b)

By

Bt
“ ´

1

ε
¨
B

Bt
px0pt

αtqq (5.23c)

“ ´
1

ε
9x0pt

α`1
q
Bτ

Bt
(5.23d)

“ ´
εα

ε
9x0pt

α`1
q (5.23e)

Recall (5.1a). Changing variables, we get that in the inner region,

Ut ´ ε
α´1 9x0pt

α`1
q
Bu

By
“ Uyy ´ U ` U

3
{V 2, (5.24)

Note that we want to involve the time term so we want α “ 2. This leads to the

prediction that the spike will move proportional to ε2. To verify this empirically, we

can run simulations and plot the change in the location of the spike center x0, which is

shown in Figure 9. We find that the movement of the peak is on the order of ε2t “ Op1q.
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Figure 9. Slow spike dynamics. The figure shows the amount of drift
in the peak of the localized spike as a function of ε, and a line of slope 2
is fitted to the data. This suggest that the motion of the localized spike
is Opε2q.

This means that time must increase by 1{ε2 to see the peak move, and since ε ăă 1,

then the spike will in fact be quasi-stable.
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6. Discussion

The canonical reaction diffusion model of pattern formation was developed because

many patterns will form in systems that contain two competing elements which are often

assumed to be chemicals. In order to gain a better understanding of the patterns that

are formed during development, many models have been extended to study patterns

in growing domains Maini et al. (2012). Furthermore, there are many variations of

reaction diffusion equations have been developed to model different coat patterns in

nature including those in (i) fish (c.f. Kondo (2009), Nakamasu et al. (2009)), (ii)

snakes (c.f. Murray and Myerscough (1991)), and (iii) leopards (c.f. Murray (1988)

and chapter Murray (2003)).

The purpose of mathematical models are to reach a deeper understanding of the

complex phenomena seen in nature, so all models, by definition, are false. However,

one of the biggest criticisms that the mathematical models for pattern formation have

received is that they are “too false”, because they are all phenomenological and have

little experimental evidence that makes the reaction-diffusion model biologically plausi-

ble. The reaction-diffusion models we have studied in these notes have a lot of attractive

points (e.g. they generate the right patterns, and relatively simple equations can lead

to a great variety of patterns with small parameter changes). However, even though we

obtain the patterns we observe in nature, this does not mean that we have captured the

biological mechanism at work. There is a good example of the heated debates that can

ensue regarding the plausibility of mathematical models in the book, “Modeling Dif-

ferential Equations in Biology” Taubes (2001). Here, Taubes presents a series of three

articles discussing a reaction-diffusion model for the formation of patterns in angelfish

that disagree on the applicability of the model, and alternatives that would yield similar

results.

Our knowledge about the science behind pattern formation has been slower to develop

than the creation of mathematical models. In part, this is due to the fact that it is hard

to isolate individual molecules and study their role in biological mechanisms. Many of

the pattern formation models we have discussed assume that there exist chemicals in

developing embryos that will react in certain ways, but it is much easier to posit the

existence of such chemicals than to find them, isolate them, and test that they do what

the models predict. In the end, it is not enough to have just the experiments or just the

math. Mathematical models can help shape and direct the experimental design, and

the results can then be used to update, change or discard the model.
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One of the difficulties of modeling pattern formation is that it is generally not possible

to analytically solve the reaction-diffusion systems that describe the dynamics of the

interacting chemical species. As shown in this paper, it is necessary to study the system

by linearizing about the steady state and checking for the Turing conditions, and if

that is not sufficient asymptotic techniques must be applied. As a result, every new

reaction-diffusion system that is proposed has to be analyzed and simulated before it is

fully understood, and this can be a slow process. Ideally, these models could be used by

experimentalists in order to make predictions about a biological system that presents

patterns. Nonetheless, variations of the same reaction-diffusion equation nonetheless

requires the full analysis to be carried out again, and the difficulty of doing so has

hindered the efforts to update the models as new experimental evidence is collected.

One of the ongoing efforts is to find methods of analyzing reaction-diffusion equations

that are easier to carry out, but that still captures the dynamics of the system. One such

method is the Local Pulse Analysis proposed by Walther et al. (2012), , which looks

at a single reaction-dfifusion systems and using bifurcation theory looks at the different

behaviors of the system with different parameter values. Interestingly, they find that

the analysis can yield a more global view of the model’s repertoire of dynamics and

using this, parameter ranges for which a system will have Turing patterns and where

it will have parameters due to other types of instabilities. Methods like Local Pulse

Analysis promise to facilitate the collaboration between applied mathematics and the

natural sciences in the future.
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7. Appendix: The website

Project site: http://www.theshapeofmath.com/princeton/dynsys

As mentioned in the Introduction, this paper accompanies a website that was created

so that students with less mathematical background could still access the concepts

and intuitions of pattern formation. The website was created in such a way that it

could be read from beginning to end like any set of course notes, or a chapter in a

textbook. Students with a general interest in pattern formation, and some mathematical

background should be able to go to the website and gain a better understanding of the

mathematical, physical, and historical ideas behind models of pattern formation.

In addition, since the website contains a wide variety of multimedia material, it

can be used as teaching aids in a dynamical systems course in order to supplement the

lectures. The integration of the website to a classroom environment can be accomplished

in several ways, for example:

1. Students can read through the relevant pages, so that they arrive to class with a

grasp on the intuitive ideas and can understand the mathematical analysis more

readily.

2. Videos can be played at the beginning of the class

3. The animations can be used by instructors to supplement lecture slides, and

students can refer to them and listen to the audio accompaniments when they

are home to refresh their memory.

4. The MATLAB demos and the embedded code can help students understand

how the animations are created and serve as a primer to the field of numerical

methods.

The website contains:

- Eight YouTube videos (approximately 4-5 minutes each) covering different topics

that were animated in Flash

- GIF animations accompanied by an audio explanation

- Notes covering material similar to that of this paper

http://www.theshapeofmath.com/princeton/dynsys
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