
Mixing Time of a Rook’s Walk

Steven S. Kim

April 2012

Advisor:

Michael Damron

Independent work for undergraduate certificate,

Program in Applied and Computational Mathematics



Contents

0 Introduction 1

1 Review of Mixing Times 1

2 The Rook’s Walk 3

3 Computations 7

4 Applications 9

5 Future Directions 10



0 Introduction

Markov chains, or Markov processes with finite (or countable) state space and discrete time
scale, have long been studied for their many applications in engineering and the sciences.
Ergodic chains in particular are known to eventually reach stationary distribution, but a
natural question arises of how quickly a Markov chain gets “close” to its invariant distribu-
tion.

In this work, I will first briefly review the theory of mixing times, and then apply one
particular technique of bounding mixing time to a Markov chain called the “rook’s walk”.
Consider the movement of a chess piece on an otherwise empty board, and at each time, let
it move randomly to any of its valid positions. I consider the rook in particular for three
reasons.

i. There is a potentially interesting application to a specific MCMC sampling algorithm
that will be discussed in a later section.

ii. It is particularly natural to generalize the movement of a rook to larger chessboards
and higher dimensions. Compare this to a piece like a queen, for which the “diagonal”
movement would have to be specified in higher dimensions.

iii. The rook does not suffer from the “boundary” conditions that a knight or a king might.
For example, a rook on a standard 8× 8 chessboard has 15 valid positions to move to,
even if it is at the edge of the board; on the other hand, a knight or a king has very
different valid moves when it is at the center as compared to the edge.

In preparing this independent work requirement for the Program of Applied and Com-
putational Mathematics, most of my literature review was done in Spring 2011 (my junior
year), as independent reading with Ramon van Handel from ORFE. I then chose to continue
a small project with Mike Damron, who has provided many helpful hints in our conversa-
tions.

1 Review of Mixing Times

Consider a finite or countable set S called the state space. A vector (αx)x∈S is called a
distribution if αx ≥ 0 and

∑
x∈S αx = 1. A matrix p = (pxy)x,y∈S is called stochastic if all

of its rows are distributions.

Definition 1.1 (Markov chain). In a probability space (Ω,F ,P), a collection of ran-
dom variables (Xt)t∈N where Xt : (Ω,F) → (S, 2S) is called a Markov chain with initial
distribution α and transition matrix p if

� P(X0 = x) = αx for all x ∈ S
� P(Xt+1 = xt+1|X0 = x0, · · · , Xt = xt) = pxtxt+1

for all x0, · · · , xt+1 ∈ S

As shorthand, we write (Xt)t∈N ∼ Mkv(α, p).

Note that a Markov chain is just a special case of a Markov process. That is, for s < t,
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and any A ∈ 2S ,

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) (1.1)

The behavior of this process is fully specified by P (Xt ∈ A|Xs), which defines the transition
matrix p. While continuous-time, uncountable state space Markov processes have their
own elegance about them, the convenience of being able to define a Markov chain through
its finite transition matrix p leads to some nice results, particular regarding the invariant
distribution.

Definition 1.2. Let (Xt)t∈N ∼ Mkv(α, p). Write p
(t)
xy for the element in the x-th row,

y-th column of pt.

� (Xt) is aperiodic if for each state x ∈ S, there exists some t0 such that p
(t)
xx > 0 for all

t ≥ t0.
� (Xt) is irreducible if for any two states x, y ∈ S, there exists some t such that p

(t)
xy > 0.

� (Xt) is ergodic if it is aperiodic and irreducible.
� A vector π that satisfies

∑
i πi = 1 and πp = π is called an invariant distribution.

Proposition 1.3 ([LPW09], see Corollary 1.17). If (Xt)t∈N ∼ Mkv(α, p) is irreducible,
and the state space S is finite, there exists a unique invariant distribution.

Theorem 1.4. If (Xt)t∈N ∼ Mkv(α, p) is ergodic with invariant distribution π, then for
all x, y ∈ S,

lim
t→∞

p(t)xy = πy (1.2)

Proof. A proof can be found in [LPW09], one that is based mostly on linear algebra ma-
nipulations. There is, however, a well-known alternative proof that relies on the idea of
coupling, of which we will provide a sketch here.

Regardless of the initial state X0, consider a different Markov chain (Yt)t∈N ∼ Mkv(π, p).
For some state z ∈ S, let τ = inf{t ≥ 0 : Xt = Yt = z}. First, note that P(τ <∞) = 1 since
(Xt, Yt)t∈N is a Markov chain that’s aperiodic and irreducible, just with state space S × S.
Now consider the process (Zt)t∈N where Zt = Xt for t ≤ τ , and Zt = Yt for t > τ . Note
that (Zt)t∈N ∼ Mkv(α, p), so

|P(Xt = x)− πx| = |P(Zt = x)− P(Yt = x)| (1.3)

= |P(Xt = x, t < τ)− P(Yt = x, t < τ)| (1.4)

≤ P(t < τ) (1.5)

t→∞−−−→ 0 (1.6)

Let us return to the question of “closeness” to stationarity. The concepts of invariance
and stationary are greatly simplified in the case of Markov chains due to the finite state
space. We will simply use a concept of distance that looks at how different pt is from π in
the worst case.

Definition 1.5. For two probability measures µ, ν on a measurable space (Ω,F), the
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total variation distance is defined to be

‖µ− ν‖TV := sup
A∈F
|µ(A)− ν(A)| (1.7)

Proposition 1.6. For two probability measures µ, ν on a measurable space (S, 2S) where
S is finite,

‖µ− ν‖TV = 1
2

∑
x∈S
|µ(x)− ν(x)| (1.8)

Definition 1.7. Where (pt)x is the x-th row of a transition matrix pt with invariant
distribution π, we define the distance to stationarity

D(t) := max
x∈S
‖(pt)x − π‖TV (1.9)

Definition 1.8. For ε > 0, we define the mixing time of a Markov chain,

tmix(ε) := inf{t ∈ N : D(t) < ε} (1.10)

2 The Rook’s Walk

Imagine the random walk of a rook on a chessboard. At each time step, it moves from its
current position to any of its valid positions with equal probability. The random walk of a
king would be similar to a simple symmetric random walk, in that it could only move to
nearest neighbor points. The convenience of the rook is that we can actually think of the
chessboard as a torus rather than a square, because the rook’s ability to go to any point in
the same row essentially “connects” the ends of each row together. While 3-dimensional (or
any sort of higher-dimensional) chess is not a commonly played game, we will consider the
behavior of a rook moving randomly on a more general chessboard nonetheless. This type
of walk first appeared in [AK91], but our main goals will be: to precisely define the rook’s
walk, and to work out the details of a mixing time bound that was mentioned but not fully
discussed in [AF02].

Definition 2.1. We denote by Zdn := {1, · · · , n}d the d-dimensional integer torus of
length n.

Definition 2.2. The rook’s walk on Zdn is the Markov chain (Xt)t∈N ∼ Mkv(α, p) on
S = Zdn, where

pxy = 1
d(n−1)1{‖y−x‖0=1} (2.1)

where ‖x‖0 =
∑d
i=1 1{xi 6=0} is the Hamming distance.

Proposition 2.3. For the rook’s walk on Zdn where n > 2,

d(n−1)
n log

(
1
2ε

)
≤ tmix(ε) ≤ d(n−1)

n log
(
nd

ε

)
(2.2)

There are several well-studied techniques and concepts used to bound distance and find
mixing times, including: coupling, conductance, bounding by hitting times and strong sta-
tionary times. Many of these arguments are discussed in-depth in [AF02] [LPW09]. How-
ever, our proof of Proposition 2.3 will use the idea of spectral gap and relaxation time
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Figure 1: Rook on a standard 8× 8 chessboard, and its possible moves

discussed in [AF02]. Let’s first introduce the concept of Markov chains that are in some
way the same “forwards” as they are “backwards”.

Definition 2.4. If (Xt)t∈N ∼ Mkv(α, p) has invariant distribution π such that

πxpxy = πypyx (2.3)

for all x, y ∈ S, the Markov chain is said to be reversible.

Lemma 2.5. For n > 2, the rook’s walk on Zdn is ergodic, reversible, and has unique
invariant distribution π where πx = 1

nd for each x ∈ S.

Proof. Let’s show these properties step-by-step.

� ergodicity: The rook’s walk is trivially aperiodic, since for n > 2, the rook can move
from state x back to state x in any amount of time t > 1 simply by moving back and
forth between two states that are in the same row as x until time t is reached. It is
also trivially irreducible, since a rook can move from state x to state y in at most d
steps (where d is the dimension of the board).

� invariant distribution: The rook’s walk is symmetric, since if two vertices x, y ∈ Zdn
are in the same “row”, then pxy = pyx = 1

d(n−1) . If two vertices do not share a row,

then pxy = pyx = 0. Thus, for any y ∈ S, we know
∑
x pxy =

∑
x pyx = 1. That is, all

the columns of p sum to 1. Thus, the invariant distribution is π since for any x ∈ S,∑
x

πxpxy = 1
nd

∑
x

pxy = 1
nd = πy (2.4)

We know this π is unique since S is finite.
� reversibility: For any x, y ∈ S, we know πx = πy and pxy = pyx, so the rook’s walk is

reversible.
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Lemma 2.6 ([LPW09], see Lemma 12.1). For the Markov chain (Xt)t∈N ∼ Mkv(α, p)
on finite S,

� If λ is an eigenvalue of p, then |λ| ≤ 1.
� If p is irreducible, the vector space of eigenvectors corresponding to the eigenvalue 1

is the one-dimensional space generated by (1, 1, · · · , 1)T .
� If p is ergodic, then −1 is not an eigenvalue of p.

Definition 2.7. Let p be a reversible transition matrix, with eigenvalues indexed in
decreasing order

1 = λ1 > λ2 ≥ · · · ≥ λ|S| ≥ −1 (2.5)

Let λ∗ := max{|λ| : λ eigenvalue of p, λ 6= 1}. We call γ∗ := 1 − λ∗ the absolute spectral
gap. We call trel := 1/γ∗ the relaxation time.

Note that the Lemma above implies that for ergodic Markov chains, λ∗ 6= −1, so γ∗ > 0.
There is also a similar concept that does not rely on the absolute value, the spectral gap
γ := 1 − λ2. It’s easy to show a connection between γ and γ∗. For example, consider a
“lazy” version of a Markov chain. That is, a new chain where at each time step, we stay
with probability 1

2 , and move as the old chain would with probability 1
2 . This is a Markov

chain with transition matrix q = p+I
2 . For any eigenvector v and eigenvalue λ of q,

λv = qv = pv+v
2 ⇒ (2λ− 1)v = pv (2.6)

Thus, (2λ− 1) is an eigenvalue of p, but by the Lemma above, we must have |2λ− 1| ≤ 1,
meaning λ ≥ 0. That is, for this lazy version of the Markov chain with transition matrix
q = p+I

2 , we know all the eigenvalues are positive, meaning γ∗ = γ.

Theorem 2.8 ([LPW09], Theorem 12.3, 12.4). For a reversible and irreducible Markov
chain with state space S,

tmix(ε) ≤ trel log
(

1
εminx∈S πx

)
(2.7)

For a reversible and ergodic Markov chain,

tmix(ε) ≥ (trel − 1) log
(

1
2ε

)
(2.8)

With the above theorem in mind, all we need to do to prove Proposition 2.3 is to
calculate trel for the rook’s walk. To do this, we can think of the rook’s walk on Zdn as
d simultaneous random walks on complete graphs Kn. Each dimension of the chessboard
looks like a complete graph to the rook, since within a row, a rook can move to any point
in just one move.

To be more precise, consider for each j = 1, · · · , d an irreducible transition matrix p̃j
on the state space S̃j with invariant distribution π̃j . Let w be a probability distribution on

{1, · · · , d}. Consider the product chain on S = S̃1 × · · · × S̃d which selects j according to
distribution w, and moves only in the j-th coordinate with transition probabilities p̃j .

For the rook’s walk, let’s write Xt = (X1
t , · · · , Xd

t ) where Xj
t represents the j-th co-

ordinate of the rook’s position at time t. Note that (X1
t , · · · , Xd

t ) is a Markov chain on
S = S̃1 × · · · × S̃d where S̃j = Zn for each j. The rook’s walk selects a coordinate
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j ∈ {1, · · · , d} uniformly at random, meaning wj = 1
d , and then changes only the j-th

coordinate according to the transition matrix p̃j where for x, y ∈ Zn,

p̃j,xy = 1
n−11{x6=y} (2.9)

It’s clear that each component chain is just a random walk on a complete graph of order
n, which has nice properties. The following theorem tells us what we can say about the
product chain given what we know about each component chain.

Lemma 2.9 ([LPW09], Lemma 12.11). Consider transition matrices p̃j on space S̃j for
j = 1, · · · , d. Let w be a probability distribution on {1, · · · , d}. Define the transition matrix
p where for x, y ∈ S = S̃1 × · · · × S̃d,

pxy =

d∑
j=1

wj p̃j,xjyj

∏
i 6=j

1{xi=yi} (2.10)

Then eigenvalues of p are of the form λ =
∑d
j=1 wj λ̃j where λ̃j is an eigenvalue of p̃j.

Lemma 2.10. The eigenvalues of the transition matrix of the random walk on the com-
plete graph of order n – that is, the stochastic process (Xt)t∈N ∼ Mkv(α, p̃) on S̃ = Zn where
p̃ is as in (2.9) – has eigenvalue 1 with multiplicity 1, and eigenvalues −1

n−1 with multiplicity
n− 1.

Proof. Consider the n× n matrix q of all ones,

q =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (2.11)

Note that p̃ = 1
n−1 (q − I). Thus, if q has eigenvalue λ for eigenvectors v1, · · · , vj , then p̃

has eigenvalue 1
n−1 (λ− 1) for the same eigenvectors v1, · · · , vj .

Let’s consider possible values of λ where qv = λv for v ∈ Rn. Note that we can write
qv = (v1 + · · · + vn)1n where 1n is an n-dimensional column vector of ones. One possible
solution is λ = n with eigenvector v where v1 = v2 = · · · = vn, a space spanned by a single
vector. Another possible solution is λ = 0, meaning v1 + · · ·+ vn = 0, a solution space with
dimension n−1. Thus, q has eigenvalue n with multiplicity 1, and 0 with multiplicity n−1,
proving our result.

Proof (of Proposition 2.3). Note that the transition matrix p for the rook’s walk as defined
in (2.1) is of the form (2.10) with wj = 1

nd and p̃j as in (2.9), since

pxy = 1
d(n−1)1{‖y−x‖0=1} = 1

d(n−1)

d∑
j=1

1{xj 6=yj}
∏
i6=j

1{xi=yi} =

d∑
j=1

wj p̃j,xjyj

∏
i 6=j

1{xi=yi}

By Lemmas 2.9 and 2.10, the second largest eigenvalue of p (both in absolute value and in
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natural order) is

λ∗ = λ2 = 1
d

[
−1
n−1 +

d−1∑
i=1

1

]
= 1

d

[
d−

(
1 + 1

n−1

)]
= 1− n

d(n−1)

Thus, γ∗ = n
d(n−1) , and trel = d(n−1)

n . Since the rook’s walk is reversible and ergodic for

n > 2 by Lemma 2.5, and we know minx∈S πx = 1
nd , then by Theorem 2.8, the result of

Proposition 2.3 follows.

Our method for bounding tmix differs slightly from the method by Aldous and Fill in
[AF02]. They consider only the case d = 2, and then transform the rook’s walk into a
continuous time version by “Poissonizing”. That is, where N(t) is a Poisson process with
rate 1, they consider the process Yt := XN(t). Using the concept of product chains in
continuous time (essentially, all that needs to be done to multiply d walks together is to slow
down each random walk by a factor of d), they explicitly derive formulae for the conditional
probability P(Yt = j|Y0 = i), and a modified distance D̄(t) := maxi,j∈S ‖(pt)i − (pt)j‖TV.
Their formula for D̄(t) is of the form D̄(t) = a1e

b1t/2 + a2e
b2t, which they then inverted to

find tmix. However, this result is limited, since it is much nastier to invert such a function
for d > 2.

3 Computations

In this section we will show a few computations for actual values of mixing time, obtained
simply by matrix multiplication to explicitly determine tmix for ε = 1

4 . Our bound from
Proposition 2.3 certainly looks nice in that it is polynomial and relatively low order in both
n and d, but the plots below will show that this bound is fairly loose, and the actual rook’s
walk seems to mix quite quickly.
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For increasing d, the Rook’s walk seems to scale nicely, but our bound (of order d2)
doesn’t seem to be too tight.
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For increasing n, the Rook’s walk seems to mix in at most d = 3 time steps, regardless
of how big n gets. This makes sense for the rook, since on the Zdn chessboard, it can reach
any other point in at most d steps. Especially for larger n, this should be quite different
from the “king’s walk”, the simple nearest-neighbor random walk on Zdn.

The code for computing the mixing times was written in MATLAB, and is attached
below:

function [ tmix ] = RookSim(n,d)

% n = side length of chessboard
% d = dimensions
states = nˆd; % number of positions
indices = n*ones(1,d); % indices per dimension
p = zeros(states, states); % initialize transition matrix

% fill in transition matrix p
for i=1:states

ivec = cell(1,d); % convert one−dim index i to d−dim indices
[ivec{:}] = ind2sub(indices,i);
for dim=1:d

for ind=1:n
% change p {ij} iff j is accessible from i by a rook
jvec = [ivec{:}];
jvec(dim) = ind;
if sum(jvec − [ivec{:}]) ˜= 0

j = polyval(jvec−1,n) + 1;
p(i,j) = 1/(d*(n−1));

end
end

end
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end

% measure mixing time
T = 50;
Dis = zeros(1,T);
invpi = 1/states * ones(1,states);
q = eye;
for t=1:T

q = q * p;
Dis(t) = max(1/2 * sum(abs(q−ones(states,1)*invpi),2));
if Dis(t) < 0.25

tmix = t;
break;

end
end

4 Applications

The simplest way to sample from a one-dimensional distribution F is just to simulate a
uniform random variable U on [0, 1), and to take the inverse cdf F−1(U). There is also
a technique known as rejection sampling, which samples some z uniformly from a cube,
and accepts z if it is in the area under the graph of the density f(x) = F ′(x), and re-
jects otherwise. Neither of these techniques works particularly well for higher-dimensional
distributions.

In [AK91], Applegate and Kannan describe and prove the efficiency of an MCMC al-
gorithm that samples from multi-dimensional, log-concave distributions; essentially the al-
gorithm is to run a random walk on a cube like Zdn, and accept that point with a certain
probability.

Consider a cube A ∈ Rn and a function f : A → R+ where φ(x) = log f(x) is concave
and smooth ([AK91] introduces parameters α, β to explicitly quantify the level of concavity
and smoothness). Note that the Gaussian distribution and members of the exponential
family fall under the condition of log-concavity. In particular, the Gaussian distribution is
basically defined on a compact interval, since for points sufficiently far from the mean, their
probability can be taken as zero.

Say I want to sample according to f ; that is, pick x such that the probability p(x) of
picking x is proportional to f(x). For ε > 0, we want for all x ∈ A and some c constant,

|p(x)− cf(x)| < ε (4.1)

For γ > 0, let Lγ = {x : xi integer multiple of γ ∀i}; we want to generate samples from
L∩A. Note that we want γ to be as small as possible to let Lγ be as fine as possible. Divide
A into cubes of side length δ (in [AK91], δ is inversely proportional to the “smoothness”
level α). Let V be the set of centers of those cubes. Let Cx be the cube in Rn with center
x. Now let’s introduce a random walk on V with transition matrix p such that for x, y ∈ V ,

� pxy = 0 if Cx and Cy don’t share a face

� pxy = 1
4n min

(
1, f(y)f(x)

)
if they share a face, and x 6= y

� pxx = 1−
∑
y 6=x pxy
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The invariant distribution is πx = f(x)∑
y∈V f(y) . Note that this is essentially a lazy version of

a nearest-neighbor random walk (a “king’s walk”).

Pick x0 ∈ V , run the random walk above until the time is greater than tmix(ε) for some
predetermined level of accuracy ε > 0, to get some point x. Pick point z uniformly from

L ∩ Cx. With probability f(z)
ef(x) , output z; otherwise, start the random walk over again.

Applegate and Kannan prove that the probability of obtaining z is indeed proportional
to f(z), and this algorithm is polynomial time. Indeed, they show a similar algorithm can
be used to integrate f(x) over the cube A, and also to find the volume of any convex body
in Rn. However, note that one of the fundamental steps is running the random walk until
mixing time, and it’s possible that the rook’s walk would mix faster for higher dimensions.

The bound for the simple nearest-neighbor random walk in [AK91] is found using con-
ductance arguments, which essentially attaches a weight (the probability of the Markov
chain going across that edge) to each edge, and bounding mixing time through that. This
is bounded through a “weighted isoperimetry” argument, which compares the square of cir-
cumference of a closed curve to the area of the region it encompasses. Unfortunately, this
relationship between the geometric surface area and conductance is a little trickier for the
rook’s walk, since the rook’s walk can essentially “skip” to non-adjacent boxes.

5 Future Directions

Given more time to explore, there are many directions to go from here. The first would
be to try to bound tmix using a conductance argument as in [AK91], but with some other
isoperimetric inequality. There is literature on isoperimetric inequalities for products of
graphs [CT98], and isoperimetric inequalities to bound random walks on graphs [Bar10],
that was not fully explored in this project.

There is also an interesting question of sharp threshold for Markov chains: that is, for a
sequence of Markov chains (Xn), for large n, does the mixing time show a sharp threshold,
such that before tmix, it is not very mixed, but afterwards, it is? A sequence of Markov

chains with mixing time t
(k)
mix(ε) for the k-th chain is defined to have cutoff if for any ε > 0,

lim
k→∞

t
(k)
mix(ε)

t
(k)
mix(1−ε)

= 1 (5.1)

A known result is that such a sequence has cutoff if and only if

lim
k→∞

Dk(ct
(k)
mix) =

{
1 if c < 1
0 if c > 1

(5.2)

where Dk is the distance to stationarity for the k-th in a sequence of Markov chains. With
our current bound in Proposition 2.3, it’s not possible to say whether the family of rook’s
walks displays the cutoff phenomenon (either for increasing n or increasing d). If the rook’s
walks do in fact have a cutoff, there are additional questions to consider, such as the concept
of “window width”, the order of magnitude of the time a rook’s walk on Zdn takes to go from
not very mixed to very mixed.

10



References

[AF02] D. Aldous and J. Fill. Reversible markov chains and random walks on graphs,
2002.

[AK91] D. Applegate and R. Kannan. Sampling and integration of near log-concave func-
tions. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of
Computing, pages 156–163. ACM, 1991.

[Bar10] M.T. Barlow. Random walks on graphs: a brief introduction. Lecture notes from
RIMS Kyoto and Cornell Probability Summer School, 2010.

[CT98] F.R.K. Chung and P. Tetali. Isoperimetric inequalities for cartesian products of
graphs. Combinatorics Probability and Computing, 7(2):141–148, 1998.

[LPW09] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times. Amer-
ican Mathematical Society, 2009.

11


